稳健的盈利预测方法:比较

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-02-21 DOI:10.1002/for.3085
Xiaojian Yu, Xiaoqian Zhang, Donald Lien
{"title":"稳健的盈利预测方法:比较","authors":"Xiaojian Yu,&nbsp;Xiaoqian Zhang,&nbsp;Donald Lien","doi":"10.1002/for.3085","DOIUrl":null,"url":null,"abstract":"<p>This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust approach to earnings forecast: A comparison\",\"authors\":\"Xiaojian Yu,&nbsp;Xiaoqian Zhang,&nbsp;Donald Lien\",\"doi\":\"10.1002/for.3085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3085\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3085","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用 MM 估计、Theil-Sen 估计和量子回归三种稳健方法生成中国金融市场的盈利预测,并根据三种预测标准评估了这三种方法的预测准确性。我们研究了六个预测模型,预测变量包括每股收益、净利润和三个盈利能力指标。我们发现,这三种稳健方法的预测结果明显优于 OLS 方法。此外,MM 估计法和量化回归法的预测准确性也优于 Theil-Sen 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust approach to earnings forecast: A comparison

This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1