受污染全血和衍生血液成分中细菌的生长与分布

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-21 DOI:10.1159/000536242
U. Gravemann, W. Handke, Torsten J. Schulze, Axel Seltsam
{"title":"受污染全血和衍生血液成分中细菌的生长与分布","authors":"U. Gravemann, W. Handke, Torsten J. Schulze, Axel Seltsam","doi":"10.1159/000536242","DOIUrl":null,"url":null,"abstract":"Introduction: Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10–100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods: WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22–24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results: Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions: Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components\",\"authors\":\"U. Gravemann, W. Handke, Torsten J. Schulze, Axel Seltsam\",\"doi\":\"10.1159/000536242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10–100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods: WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22–24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results: Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions: Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000536242\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000536242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

导言:血液制品中的细菌污染可能主要发生在采血过程中,最初的浓度较低,每袋只有 10-100 个菌落形成单位 (CFU)。由于人们对储存的全血(WB)和全血衍生血液制品中细菌的生长行为和分布知之甚少,本研究旨在提供这方面的数据。研究方法给 WB 单位接种与输血相关的细菌种类(鲍曼不动杆菌、蜡样芽孢杆菌、大肠埃希菌、肺炎克雷伯菌、单核细胞增生李斯特菌、荧光假单胞菌、肉毒杆菌、金黄色葡萄球菌、表皮葡萄球菌、痢疾链球菌、化脓性链球菌、小肠结肠炎耶尔森菌;n=12),在室温下保存 22-24 小时,然后离心分离成血浆、红细胞(RBC)和缓冲衣(BC)。后者与 3 个随机供体 BC 和各一个单位的 PAS-E 混合,得到血浆还原血小板浓缩物(PC)。细菌菌落计数样本在 WB 储存后和血液成分生产后立即采集。储存 7 天后,通过细菌培养对 PC(每个品种 12 个)进行无菌检测。结果不同捐赠和不同种类的 WB 中细菌生长情况差异显著。链球菌在 WB 中的滴度最高,而金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌和荧光假单胞菌则不繁殖。离心后,细菌优先在 BCs 中聚集,BCs 中的滴度高达 3.5 × 103 CFU/mL,而 BC 衍生的 PCs 中的滴度则≤0.9 × 103 CFU/mL。总体而言,72/144 个 PC(50%)在储存后细菌检测呈阳性。无菌检测结果与菌种有关,化脓性链球菌阳性的 PC 有 12 例,大肠杆菌阳性的 PC 只有 1 例。红细胞和血浆单位受到细菌污染的情况要少得多,而且与母体 WB 单位中较高的初始细菌计数有关。结论白细胞计数器中细菌的生长与物种有关,不同捐赠之间差异很大。在生产过程中,细菌在 BC 中的优先积累是决定 BC 衍生的集合 PC 污染风险的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components
Introduction: Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10–100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods: WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22–24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results: Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions: Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1