阿拉林能增强大鼠大脑切片中的持续癫痫样活动:体外电生理学研究

IF 1.4 4区 医学 Q4 NEUROSCIENCES Acta neurobiologiae experimentalis Pub Date : 2024-02-21 DOI:10.55782/ane-2024-2520
Ömer Faruk Kalkan, Hilal Öztürk, Zafer Şahin, Harun Başoğlu, Selcen Aydin Abidin, İ. Abidin
{"title":"阿拉林能增强大鼠大脑切片中的持续癫痫样活动:体外电生理学研究","authors":"Ömer Faruk Kalkan, Hilal Öztürk, Zafer Şahin, Harun Başoğlu, Selcen Aydin Abidin, İ. Abidin","doi":"10.55782/ane-2024-2520","DOIUrl":null,"url":null,"abstract":"Alarin is a newly discovered neuropeptide that belongs to the galanin peptide family with a wide range of bioactivity in the nervous system. Its function in the brain’s autonomic areas has been studied, and it has been reported that alarin is involved in the regulation of excitability in hypothalamic neurons. Its role in the regulation of excitability in the hippocampus, however, is unknown. In this study, we investigated if alarin induced any synchronous discharges or epileptiform activity, and if it had any effect on already initiated epileptiform discharges. We used thick acute horizontal hippocampal slices obtained from 30‑ to 35‑day‑old rats. Extracellular field potential recordings were evaluated in the CA1 region of the hippocampus. Our data demonstrated that, alarin application did not result in any epileptiform activity or abnormal discharges. 4‑aminopyridine was applied to induce epileptiform activity in the slices. We found that alarin increased the frequency of interictal‑like events and the mean power of local field potentials in the CA1 region of the hippocampus, which was induced by 4‑aminopyridine. These results demonstrated for the first time that alarin has a modulatory effect on synchronized neuronal discharges and showed the contribution of the neuropeptide alarin to epilepsy‑like conditions.","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"20 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alarin potentiates ongoing epileptiform activity in rat brain slices: an in vitro electrophysiological study\",\"authors\":\"Ömer Faruk Kalkan, Hilal Öztürk, Zafer Şahin, Harun Başoğlu, Selcen Aydin Abidin, İ. Abidin\",\"doi\":\"10.55782/ane-2024-2520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alarin is a newly discovered neuropeptide that belongs to the galanin peptide family with a wide range of bioactivity in the nervous system. Its function in the brain’s autonomic areas has been studied, and it has been reported that alarin is involved in the regulation of excitability in hypothalamic neurons. Its role in the regulation of excitability in the hippocampus, however, is unknown. In this study, we investigated if alarin induced any synchronous discharges or epileptiform activity, and if it had any effect on already initiated epileptiform discharges. We used thick acute horizontal hippocampal slices obtained from 30‑ to 35‑day‑old rats. Extracellular field potential recordings were evaluated in the CA1 region of the hippocampus. Our data demonstrated that, alarin application did not result in any epileptiform activity or abnormal discharges. 4‑aminopyridine was applied to induce epileptiform activity in the slices. We found that alarin increased the frequency of interictal‑like events and the mean power of local field potentials in the CA1 region of the hippocampus, which was induced by 4‑aminopyridine. These results demonstrated for the first time that alarin has a modulatory effect on synchronized neuronal discharges and showed the contribution of the neuropeptide alarin to epilepsy‑like conditions.\",\"PeriodicalId\":7032,\"journal\":{\"name\":\"Acta neurobiologiae experimentalis\",\"volume\":\"20 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurobiologiae experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55782/ane-2024-2520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane-2024-2520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿拉林是一种新发现的神经肽,属于加拉宁肽家族,在神经系统中具有广泛的生物活性。研究人员对其在大脑自律神经区域的功能进行了研究,发现阿拉林参与了下丘脑神经元兴奋性的调节。然而,它在海马兴奋性调节中的作用尚不清楚。在这项研究中,我们调查了阿拉林是否会诱发任何同步放电或癫痫样活动,以及是否会对已经开始的癫痫样放电产生任何影响。我们使用了从出生 30 到 35 天的大鼠身上获得的厚急性水平海马切片。对海马 CA1 区的胞外场电位记录进行了评估。我们的数据表明,应用阿拉林不会导致任何癫痫样活动或异常放电。应用 4-氨基吡啶诱导切片中的癫痫样活动。我们发现,在 4-aminopyridine 的诱导下,阿拉林增加了海马 CA1 区发作间期样事件的频率和局部场电位的平均功率。这些结果首次证明了阿拉林对同步神经元放电具有调节作用,并显示了神经肽阿拉林对癫痫样状态的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alarin potentiates ongoing epileptiform activity in rat brain slices: an in vitro electrophysiological study
Alarin is a newly discovered neuropeptide that belongs to the galanin peptide family with a wide range of bioactivity in the nervous system. Its function in the brain’s autonomic areas has been studied, and it has been reported that alarin is involved in the regulation of excitability in hypothalamic neurons. Its role in the regulation of excitability in the hippocampus, however, is unknown. In this study, we investigated if alarin induced any synchronous discharges or epileptiform activity, and if it had any effect on already initiated epileptiform discharges. We used thick acute horizontal hippocampal slices obtained from 30‑ to 35‑day‑old rats. Extracellular field potential recordings were evaluated in the CA1 region of the hippocampus. Our data demonstrated that, alarin application did not result in any epileptiform activity or abnormal discharges. 4‑aminopyridine was applied to induce epileptiform activity in the slices. We found that alarin increased the frequency of interictal‑like events and the mean power of local field potentials in the CA1 region of the hippocampus, which was induced by 4‑aminopyridine. These results demonstrated for the first time that alarin has a modulatory effect on synchronized neuronal discharges and showed the contribution of the neuropeptide alarin to epilepsy‑like conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
7.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.
期刊最新文献
Different faces of autism: Patients with mutations in PTEN and FMR1 genes. Leflunomide exerts neuroprotective effects in an MPTP‑treated mouse model of Parkinsonism. Piperine relieves neuropathic pain induced by paclitaxel in mice. Response of miRNA to treatment with Hypericum perforatum L. oil in multiple sclerosis. The integral role of PTEN in brain function: from neurogenesis to synaptic plasticity and social behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1