由不同材料组成的电磁大目标散射的涡旋电磁波束的散射场强度和轨道角动量谱分布

Remote. Sens. Pub Date : 2024-02-21 DOI:10.3390/rs16050754
Minghao Sun, Song-hua Liu, Lixin Guo
{"title":"由不同材料组成的电磁大目标散射的涡旋电磁波束的散射场强度和轨道角动量谱分布","authors":"Minghao Sun, Song-hua Liu, Lixin Guo","doi":"10.3390/rs16050754","DOIUrl":null,"url":null,"abstract":"In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into plane waves in the spectral domain at different elevations and azimuths. We combined this method with the physical optics algorithm to calculate the scattering field distribution. The OAM spectra of the scattering field along different observation radii were analyzed using the spiral spectrum expansion method. The numerical results indicate that for beams with different parameters (such as polarization, topological charge, half-cone angle, and frequency) and targets with different characteristics (such as composition), the scattering field intensity distribution and OAM spectral characteristics varied considerably. When the beam parameters change, the results of scattering from different materials show similar changing trends. Compared with beams scattered by uncoated metal and dielectric targets, the scattering field of the coating target can better maintain the shape and OAM mode of beams from the incident field. The scattering characteristics of metal targets were the most sensitive to beam-parameter changes. The relationship between the beam parameters, target parameters, the scattering field intensity, and the OAM spectra of the scattering field was constructed, confirming that the spiral spectrum of the scattering field carries the target information. These findings can be used in remote sensing engineering to supplement existing radar imaging, laying the foundation for further identification of beam or target parameters.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"97 ","pages":"754"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering Field Intensity and Orbital Angular Momentum Spectral Distribution of Vortex Electromagnetic Beams Scattered by Electrically Large Targets Comprising Different Materials\",\"authors\":\"Minghao Sun, Song-hua Liu, Lixin Guo\",\"doi\":\"10.3390/rs16050754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into plane waves in the spectral domain at different elevations and azimuths. We combined this method with the physical optics algorithm to calculate the scattering field distribution. The OAM spectra of the scattering field along different observation radii were analyzed using the spiral spectrum expansion method. The numerical results indicate that for beams with different parameters (such as polarization, topological charge, half-cone angle, and frequency) and targets with different characteristics (such as composition), the scattering field intensity distribution and OAM spectral characteristics varied considerably. When the beam parameters change, the results of scattering from different materials show similar changing trends. Compared with beams scattered by uncoated metal and dielectric targets, the scattering field of the coating target can better maintain the shape and OAM mode of beams from the incident field. The scattering characteristics of metal targets were the most sensitive to beam-parameter changes. The relationship between the beam parameters, target parameters, the scattering field intensity, and the OAM spectra of the scattering field was constructed, confirming that the spiral spectrum of the scattering field carries the target information. These findings can be used in remote sensing engineering to supplement existing radar imaging, laying the foundation for further identification of beam or target parameters.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":\"97 \",\"pages\":\"754\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16050754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs16050754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们获得了涡旋电磁光束照射由不同材料组成的电大目标时的散射场的强度和轨道角动量(OAM)谱分布。我们使用角光谱分解法将涡旋光束分解为光谱域中不同仰角和方位角的平面波。我们将这种方法与物理光学算法相结合,计算出散射场分布。利用螺旋谱扩展法分析了沿不同观测半径的散射场的 OAM 谱。数值结果表明,对于不同参数(如偏振、拓扑电荷、半锥角和频率)的光束和不同特征(如成分)的目标,散射场强度分布和 OAM 光谱特征变化很大。当光束参数发生变化时,不同材料的散射结果也呈现出类似的变化趋势。与未涂层金属靶和介质靶散射的光束相比,涂层靶的散射场能更好地保持入射场光束的形状和 OAM 模式。金属靶的散射特性对光束参数的变化最为敏感。构建了光束参数、目标参数、散射场强度和散射场 OAM 光谱之间的关系,证实散射场的螺旋光谱携带着目标信息。这些发现可用于遥感工程,补充现有的雷达成像,为进一步确定波束或目标参数奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scattering Field Intensity and Orbital Angular Momentum Spectral Distribution of Vortex Electromagnetic Beams Scattered by Electrically Large Targets Comprising Different Materials
In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into plane waves in the spectral domain at different elevations and azimuths. We combined this method with the physical optics algorithm to calculate the scattering field distribution. The OAM spectra of the scattering field along different observation radii were analyzed using the spiral spectrum expansion method. The numerical results indicate that for beams with different parameters (such as polarization, topological charge, half-cone angle, and frequency) and targets with different characteristics (such as composition), the scattering field intensity distribution and OAM spectral characteristics varied considerably. When the beam parameters change, the results of scattering from different materials show similar changing trends. Compared with beams scattered by uncoated metal and dielectric targets, the scattering field of the coating target can better maintain the shape and OAM mode of beams from the incident field. The scattering characteristics of metal targets were the most sensitive to beam-parameter changes. The relationship between the beam parameters, target parameters, the scattering field intensity, and the OAM spectra of the scattering field was constructed, confirming that the spiral spectrum of the scattering field carries the target information. These findings can be used in remote sensing engineering to supplement existing radar imaging, laying the foundation for further identification of beam or target parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1