闭环机械装置的惯性参数识别:适应坐标划分的线性回归

L. Pyrhönen, Thijs Willems, A. Mikkola, Frank Naets
{"title":"闭环机械装置的惯性参数识别:适应坐标划分的线性回归","authors":"L. Pyrhönen, Thijs Willems, A. Mikkola, Frank Naets","doi":"10.1115/1.4064794","DOIUrl":null,"url":null,"abstract":"\n This study investigates the use of linear-regression-based identification in rigid multibody system applications. A multibody system model, originally described with differential-algebraic equations, is transformed into a set of ordinary differential equations using coordinate partitioning. This allows the identification framework (where the system is described with ordinary differential equations) to be applied to rigid multibody systems described with non-minimal coordinates. The methodology is demonstrated via numerical and experimental validation on a slider-crank mechanism. The results show that the presented methodology is capable of accurately identifying the system's inertial parameters even with a short motion trajectory used for training. The presented linear-regression-based identification approach opens new opportunities to develop more accurate multibody models. The resulting updated multibody models can be considered especially useful for state-estimation and the control of multibody systems.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"704 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial Parameter Identification for Closed-Loop Mechanisms: Adaptation of Linear Regression for Coordinate Partitioning\",\"authors\":\"L. Pyrhönen, Thijs Willems, A. Mikkola, Frank Naets\",\"doi\":\"10.1115/1.4064794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates the use of linear-regression-based identification in rigid multibody system applications. A multibody system model, originally described with differential-algebraic equations, is transformed into a set of ordinary differential equations using coordinate partitioning. This allows the identification framework (where the system is described with ordinary differential equations) to be applied to rigid multibody systems described with non-minimal coordinates. The methodology is demonstrated via numerical and experimental validation on a slider-crank mechanism. The results show that the presented methodology is capable of accurately identifying the system's inertial parameters even with a short motion trajectory used for training. The presented linear-regression-based identification approach opens new opportunities to develop more accurate multibody models. The resulting updated multibody models can be considered especially useful for state-estimation and the control of multibody systems.\",\"PeriodicalId\":506262,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"704 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了基于线性回归的识别技术在刚性多体系统应用中的应用。最初用微分代数方程描述的多体系统模型,通过坐标分割转换成一组常微分方程。这使得识别框架(用常微分方程描述系统)可以应用于用非最小坐标描述的刚性多体系统。该方法通过对滑块-曲柄机构的数值和实验验证进行了演示。结果表明,即使是用于训练的短运动轨迹,所提出的方法也能准确识别系统的惯性参数。所提出的基于线性回归的识别方法为开发更精确的多体模型提供了新的机遇。更新后的多体模型尤其适用于多体系统的状态估计和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inertial Parameter Identification for Closed-Loop Mechanisms: Adaptation of Linear Regression for Coordinate Partitioning
This study investigates the use of linear-regression-based identification in rigid multibody system applications. A multibody system model, originally described with differential-algebraic equations, is transformed into a set of ordinary differential equations using coordinate partitioning. This allows the identification framework (where the system is described with ordinary differential equations) to be applied to rigid multibody systems described with non-minimal coordinates. The methodology is demonstrated via numerical and experimental validation on a slider-crank mechanism. The results show that the presented methodology is capable of accurately identifying the system's inertial parameters even with a short motion trajectory used for training. The presented linear-regression-based identification approach opens new opportunities to develop more accurate multibody models. The resulting updated multibody models can be considered especially useful for state-estimation and the control of multibody systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source Nonlinear Static and Dynamic Responses of a Floating Rod Pendulum Harmonic Response of a Highly Flexible Thin Long Cantilever Beam: A Semi-Analytical Approach in Time-Domain with ANCF Modeling and Experimental Validation Full-Dimensional PD Control Technique for Turing Pattern and Bifurcation of Delayed Reaction-Diffusion Bi-Directional Ring Neural Networks Haar Wavelet Approach for the Mathematical Model On Hepatitis B Virus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1