机翼上湍流的神经网络增强 SED-SL 建模

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2024-02-20 DOI:10.1007/s10409-023-23517-x
Wenxiao Huang  (, ), Yilang Liu  (, ), Weitao Bi  (, ), Yizhuo Gao  (, ), Jun Chen  (, )
{"title":"机翼上湍流的神经网络增强 SED-SL 建模","authors":"Wenxiao Huang \n (,&nbsp;),&nbsp;Yilang Liu \n (,&nbsp;),&nbsp;Weitao Bi \n (,&nbsp;),&nbsp;Yizhuo Gao \n (,&nbsp;),&nbsp;Jun Chen \n (,&nbsp;)","doi":"10.1007/s10409-023-23517-x","DOIUrl":null,"url":null,"abstract":"<div><p>A novel modeling paradigm, named as SED-SL-RBF, enhances the structural ensemble dynamics-stress length (SED-SL) model of wall-bounded turbulence using limited aerodynamic data from NACA airfoils. It constructs a multi-layer structure (MLS) of the turbulent boundary layer (BL) over the airfoils and uses machine learning to reconstruct model parameters from experimental data. This approach has been applied to turbulent flows over nine distinct NACA airfoil types, with a broad spectrum of Reynolds numbers and angles of attack. The model parameters, <i>l</i><span>\n <sup>∞</sup><sub>0</sub>\n \n </span> and <i>y</i><span>\n <sup>∞</sup><sub>buf</sub>\n \n </span>, are reconstructed using a radial basis function (RBF) neural network and applied to an SED-SL computational fluid dynamics (CFD) solver. This results in improved predictions of lift and drag coefficients for geometries and flow conditions previously calculated using the Menter shear stress transport (SST) turbulence model. The accuracy of the predictive lift coefficient <i>C</i><sub><i>L</i></sub> exceeded 95%, while the error in the predictive drag coefficient <i>C</i><sub><i>D</i></sub> was less than 6 counts. The neural network-augmented SED-SL model also demonstrated exceptional predictive accuracy for the pressure field. The MLS parameters for NACA 2421 exhibit similarities with angle of attack (AOA), which can be treated as functions of the Reynolds number. These findings suggested that the MLS parameters for NACA 2421 are independent of the AOA prior to stall. This similarity behavior provides a promising approach to model airfoil flows under various physical conditions. The broader vision is to integrate data to reveal innate model discrepancies in terms of model parameters, thereby extending the applicability of the SED-SL-RBF model to a wider range of flow scenarios.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network-augmented SED-SL modeling of turbulent flows over airfoils\",\"authors\":\"Wenxiao Huang \\n (,&nbsp;),&nbsp;Yilang Liu \\n (,&nbsp;),&nbsp;Weitao Bi \\n (,&nbsp;),&nbsp;Yizhuo Gao \\n (,&nbsp;),&nbsp;Jun Chen \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-023-23517-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel modeling paradigm, named as SED-SL-RBF, enhances the structural ensemble dynamics-stress length (SED-SL) model of wall-bounded turbulence using limited aerodynamic data from NACA airfoils. It constructs a multi-layer structure (MLS) of the turbulent boundary layer (BL) over the airfoils and uses machine learning to reconstruct model parameters from experimental data. This approach has been applied to turbulent flows over nine distinct NACA airfoil types, with a broad spectrum of Reynolds numbers and angles of attack. The model parameters, <i>l</i><span>\\n <sup>∞</sup><sub>0</sub>\\n \\n </span> and <i>y</i><span>\\n <sup>∞</sup><sub>buf</sub>\\n \\n </span>, are reconstructed using a radial basis function (RBF) neural network and applied to an SED-SL computational fluid dynamics (CFD) solver. This results in improved predictions of lift and drag coefficients for geometries and flow conditions previously calculated using the Menter shear stress transport (SST) turbulence model. The accuracy of the predictive lift coefficient <i>C</i><sub><i>L</i></sub> exceeded 95%, while the error in the predictive drag coefficient <i>C</i><sub><i>D</i></sub> was less than 6 counts. The neural network-augmented SED-SL model also demonstrated exceptional predictive accuracy for the pressure field. The MLS parameters for NACA 2421 exhibit similarities with angle of attack (AOA), which can be treated as functions of the Reynolds number. These findings suggested that the MLS parameters for NACA 2421 are independent of the AOA prior to stall. This similarity behavior provides a promising approach to model airfoil flows under various physical conditions. The broader vision is to integrate data to reveal innate model discrepancies in terms of model parameters, thereby extending the applicability of the SED-SL-RBF model to a wider range of flow scenarios.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-023-23517-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23517-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

一种名为 SED-SL-RBF 的新型建模范例利用 NACA 机翼的有限空气动力学数据增强了壁界湍流的结构集合动力学-应力长度(SED-SL)模型。它构建了翼面湍流边界层(BL)的多层结构(MLS),并利用机器学习从实验数据中重建模型参数。这种方法已应用于九种不同类型的 NACA 机翼上的湍流,具有广泛的雷诺数和攻角范围。使用径向基函数(RBF)神经网络重建模型参数 l ∞0 和 y ∞buf,并将其应用于 SED-SL 计算流体动力学(CFD)求解器。这改进了以前使用 Menter 剪切应力传输(SST)湍流模型计算的几何形状和流动条件下的升力和阻力系数预测。升力系数 CL 的预测准确率超过 95%,而阻力系数 CD 的预测误差小于 6 个计数点。神经网络增强的 SED-SL 模型对压力场的预测精度也非常高。NACA 2421 的 MLS 参数与攻角 (AOA) 具有相似性,可视为雷诺数的函数。这些发现表明,NACA 2421 的 MLS 参数与失速前的 AOA 无关。这种相似性为模拟各种物理条件下的机翼流动提供了一种可行的方法。更广阔的愿景是整合数据以揭示模型参数方面的先天模型差异,从而将 SED-SL-RBF 模型的适用性扩展到更广泛的流动场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network-augmented SED-SL modeling of turbulent flows over airfoils

A novel modeling paradigm, named as SED-SL-RBF, enhances the structural ensemble dynamics-stress length (SED-SL) model of wall-bounded turbulence using limited aerodynamic data from NACA airfoils. It constructs a multi-layer structure (MLS) of the turbulent boundary layer (BL) over the airfoils and uses machine learning to reconstruct model parameters from experimental data. This approach has been applied to turbulent flows over nine distinct NACA airfoil types, with a broad spectrum of Reynolds numbers and angles of attack. The model parameters, l 0 and y buf , are reconstructed using a radial basis function (RBF) neural network and applied to an SED-SL computational fluid dynamics (CFD) solver. This results in improved predictions of lift and drag coefficients for geometries and flow conditions previously calculated using the Menter shear stress transport (SST) turbulence model. The accuracy of the predictive lift coefficient CL exceeded 95%, while the error in the predictive drag coefficient CD was less than 6 counts. The neural network-augmented SED-SL model also demonstrated exceptional predictive accuracy for the pressure field. The MLS parameters for NACA 2421 exhibit similarities with angle of attack (AOA), which can be treated as functions of the Reynolds number. These findings suggested that the MLS parameters for NACA 2421 are independent of the AOA prior to stall. This similarity behavior provides a promising approach to model airfoil flows under various physical conditions. The broader vision is to integrate data to reveal innate model discrepancies in terms of model parameters, thereby extending the applicability of the SED-SL-RBF model to a wider range of flow scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock Voids and cracks detection in bulk superconductors through magnetic field and displacement signals Introducing and analyzing a periodic pipe-in-pipe model for broadband ultra-low-frequency vibration reduction in fluid-conveying pipes Radiation investigation behind 4.7 km/s shock waves with nitrogen using a square section shock tube The impacts of variable nonlocal, length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1