基于 APSO 和 TWSVM 的露天矿高陡边坡地表变形预测模型

Sunwen Du, Ruiting Song, Qing Qu, Zhiying Zhao, Hailing Sun, Yanwei Chen
{"title":"基于 APSO 和 TWSVM 的露天矿高陡边坡地表变形预测模型","authors":"Sunwen Du, Ruiting Song, Qing Qu, Zhiying Zhao, Hailing Sun, Yanwei Chen","doi":"10.5755/j02.eie.36115","DOIUrl":null,"url":null,"abstract":"At present, due to the complex and changeable geological conditions, the precise deformation prediction technology of high and steep slope could not achieve an accurate prediction. In particular, the single forecasting model has some problems such as poor stability, low precision, and data fluctuation. In practice, excavating the complex nonlinear relationship between open-pit slope surface deformation monitoring data and various influencing factors and improving the accuracy of the deformation prediction of high and steep slopes is the key to safe open-pit mine production. It proposed to introduce the position factor and the velocity factor into a twin support vector machine (TWSVM). The adaptive subgroup optimisation (APSO) algorithm is selected for parameter optimisation. Through the comparative analysis of TWSVM, genetic algorithm-TWSVM (GA-TWSVM), and the proposed APSO⁃TWSVM, the experimental data show that the mean absolute error (MAE) values of the three models are 13.29 %,8.17 %, and 1.27 %, the RMSE - 47.83 %,6.52 %, and 3.02 %, respectively; the prediction time for APSO⁃TWSVM is improved by 62.5 % compared to GA-TWSVM.","PeriodicalId":507694,"journal":{"name":"Elektronika ir Elektrotechnika","volume":"41 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Deformation Prediction Model of High and Steep Open-Pit Slope Based on APSO and TWSVM\",\"authors\":\"Sunwen Du, Ruiting Song, Qing Qu, Zhiying Zhao, Hailing Sun, Yanwei Chen\",\"doi\":\"10.5755/j02.eie.36115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, due to the complex and changeable geological conditions, the precise deformation prediction technology of high and steep slope could not achieve an accurate prediction. In particular, the single forecasting model has some problems such as poor stability, low precision, and data fluctuation. In practice, excavating the complex nonlinear relationship between open-pit slope surface deformation monitoring data and various influencing factors and improving the accuracy of the deformation prediction of high and steep slopes is the key to safe open-pit mine production. It proposed to introduce the position factor and the velocity factor into a twin support vector machine (TWSVM). The adaptive subgroup optimisation (APSO) algorithm is selected for parameter optimisation. Through the comparative analysis of TWSVM, genetic algorithm-TWSVM (GA-TWSVM), and the proposed APSO⁃TWSVM, the experimental data show that the mean absolute error (MAE) values of the three models are 13.29 %,8.17 %, and 1.27 %, the RMSE - 47.83 %,6.52 %, and 3.02 %, respectively; the prediction time for APSO⁃TWSVM is improved by 62.5 % compared to GA-TWSVM.\",\"PeriodicalId\":507694,\"journal\":{\"name\":\"Elektronika ir Elektrotechnika\",\"volume\":\"41 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika ir Elektrotechnika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.36115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika ir Elektrotechnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.eie.36115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,由于地质条件复杂多变,高陡边坡变形精确预报技术无法实现精确预报。尤其是单一的预测模型存在稳定性差、精度低、数据波动大等问题。在实践中,挖掘露天矿坡面变形监测数据与各种影响因素之间复杂的非线性关系,提高高陡边坡变形预测精度是露天矿安全生产的关键。该研究提出在孪生支持向量机(TWSVM)中引入位置因子和速度因子。选择自适应子群优化(APSO)算法进行参数优化。通过对 TWSVM、遗传算法-TWSVM(GA-TWSVM)和所提出的 APSO⁃TWSVM 的对比分析,实验数据表明三种模型的平均绝对误差(MAE)值分别为 13.29 %、8.17 %和1.27 %,均方根误差(RMSE)分别为47.83 %、6.52 %和3.02 %;APSO⁃TWSVM的预测时间比GA-TWSVM提高了62.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Deformation Prediction Model of High and Steep Open-Pit Slope Based on APSO and TWSVM
At present, due to the complex and changeable geological conditions, the precise deformation prediction technology of high and steep slope could not achieve an accurate prediction. In particular, the single forecasting model has some problems such as poor stability, low precision, and data fluctuation. In practice, excavating the complex nonlinear relationship between open-pit slope surface deformation monitoring data and various influencing factors and improving the accuracy of the deformation prediction of high and steep slopes is the key to safe open-pit mine production. It proposed to introduce the position factor and the velocity factor into a twin support vector machine (TWSVM). The adaptive subgroup optimisation (APSO) algorithm is selected for parameter optimisation. Through the comparative analysis of TWSVM, genetic algorithm-TWSVM (GA-TWSVM), and the proposed APSO⁃TWSVM, the experimental data show that the mean absolute error (MAE) values of the three models are 13.29 %,8.17 %, and 1.27 %, the RMSE - 47.83 %,6.52 %, and 3.02 %, respectively; the prediction time for APSO⁃TWSVM is improved by 62.5 % compared to GA-TWSVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse Point Cloud Registration Network with Semantic Supervision in Wilderness Scenes Performance Analysis of PSO-Based SHEPWM Control of Clone Output Nine-Switch Inverter for Nonlinear Loads Spider Monkey Metaheuristic Tuning of Model Predictive Control with Perched Landing Stabilities for Novel Auxetic Landing Foot in Drones Evaluating the Efficacy of Real-Time Connected Vehicle Basic Safety Messages in Mitigating Aberrant Driving Behaviour and Risk of Vehicle Crashes: Preliminary Insights from Highway Scenarios Development of a Position Control System for Wheeled Humanoid Robot Movement Using the Swerve Drive Method Based on Fuzzy Logic Type-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1