基于 3CVSP 数据的断裂软弱性参数反演:第一部分:各向同性背景介质中由单一断裂组构成的 HTI 介质

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2024-02-19 DOI:10.1190/geo2023-0539.1
Yuyong Yang, Alexey Stovas, Qiaomu Qi, Huailai Zhou
{"title":"基于 3CVSP 数据的断裂软弱性参数反演:第一部分:各向同性背景介质中由单一断裂组构成的 HTI 介质","authors":"Yuyong Yang, Alexey Stovas, Qiaomu Qi, Huailai Zhou","doi":"10.1190/geo2023-0539.1","DOIUrl":null,"url":null,"abstract":"Natural fractures in oil and gas reservoirs are a crucial factor that cannot be ignored, as they significantly influence the reservoir's petrophysical properties and hydrocarbon development. A horizontal transversely isotropic (HTI) medium composed of a single fracture set in an isotropic background is a typical anisotropic medium. Meanwhile, the shear wave splitting (SWS) is a sensitive response of such anisotropic media, resulting in the generation of fast and slow shear waves. The normal and tangential fracture weaknesses are crucial parameters that characterize the anisotropy of fractured media. We proposed an inversion method for fracture weakness based on three-component vertical seismic profiling (3CVSP) data. Firstly, assuming weak anisotropy and an HTI medium containing single fracture set, we derived a first-order linear approximation of the travel times of the converted fast and slow shear waves (PS1- and PS2-waves) with respect to fracture weakness parameters in the phase velocity domain. By solving for the horizontal projection of the slowness vector, approximate equations of the travel times of the PS1- and PS2-waves were converted from phase velocity domain to the group velocity domain. Furthermore, we devised an inversion workflow consisting of three primary steps: 1. pre-processing the VSP data to derive the travel times and azimuth of the HTI medium; 2. constructing a forward model with undetermined fracture weakness parameters; 3. following the establishment of the objective function, conducting the inversion for the fracture weakness parameters. We demonstrated the reliability of the method through numerical examples and synthetic 3CVSP data. The inversion errors are primarily influenced by the azimuth angle, with minimal influence from the receiver depth. Furthermore, a collective set of inverted results derived from all geophones are more stable and accurate than individual geophones. The application to actual 3CVSP data further confirmed the effectiveness of our approach.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion of Fracture Weakness Parameters Based on the 3CVSP Data?Part I: HTI Media Composed of A Single Fracture Set in the Isotropic Background Media\",\"authors\":\"Yuyong Yang, Alexey Stovas, Qiaomu Qi, Huailai Zhou\",\"doi\":\"10.1190/geo2023-0539.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural fractures in oil and gas reservoirs are a crucial factor that cannot be ignored, as they significantly influence the reservoir's petrophysical properties and hydrocarbon development. A horizontal transversely isotropic (HTI) medium composed of a single fracture set in an isotropic background is a typical anisotropic medium. Meanwhile, the shear wave splitting (SWS) is a sensitive response of such anisotropic media, resulting in the generation of fast and slow shear waves. The normal and tangential fracture weaknesses are crucial parameters that characterize the anisotropy of fractured media. We proposed an inversion method for fracture weakness based on three-component vertical seismic profiling (3CVSP) data. Firstly, assuming weak anisotropy and an HTI medium containing single fracture set, we derived a first-order linear approximation of the travel times of the converted fast and slow shear waves (PS1- and PS2-waves) with respect to fracture weakness parameters in the phase velocity domain. By solving for the horizontal projection of the slowness vector, approximate equations of the travel times of the PS1- and PS2-waves were converted from phase velocity domain to the group velocity domain. Furthermore, we devised an inversion workflow consisting of three primary steps: 1. pre-processing the VSP data to derive the travel times and azimuth of the HTI medium; 2. constructing a forward model with undetermined fracture weakness parameters; 3. following the establishment of the objective function, conducting the inversion for the fracture weakness parameters. We demonstrated the reliability of the method through numerical examples and synthetic 3CVSP data. The inversion errors are primarily influenced by the azimuth angle, with minimal influence from the receiver depth. Furthermore, a collective set of inverted results derived from all geophones are more stable and accurate than individual geophones. The application to actual 3CVSP data further confirmed the effectiveness of our approach.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0539.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0539.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

油气藏中的天然裂缝是一个不容忽视的关键因素,因为它们对油气藏的岩石物理特性和油气开发有重大影响。水平横向各向同性(HTI)介质是一种典型的各向异性介质,由各向同性背景中的单一裂缝组成。同时,剪切波分裂(SWS)是此类各向异性介质的敏感响应,会产生快慢剪切波。法向和切向断裂弱度是表征断裂介质各向异性的关键参数。我们提出了一种基于三分量垂直地震剖面(3CVSP)数据的裂缝软弱性反演方法。首先,假设各向异性较弱且 HTI 介质包含单个断裂组,我们推导出转换后的快慢剪切波(PS1 波和 PS2 波)在相速度域中的移动时间与断裂软弱性参数的一阶线性近似值。通过求解慢度矢量的水平投影,PS1 波和 PS2 波的行程时间近似方程从相速度域转换到群速度域。此外,我们还设计了一套反演工作流程,包括三个主要步骤:1. 预处理 VSP 数据,得出 HTI 介质的传播时间和方位角;2.我们通过数值示例和合成的 3CVSP 数据证明了该方法的可靠性。反演误差主要受方位角的影响,而接收器深度的影响很小。此外,与单个检波器相比,由所有检波器得出的集合反演结果更加稳定和准确。对实际 3CVSP 数据的应用进一步证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inversion of Fracture Weakness Parameters Based on the 3CVSP Data?Part I: HTI Media Composed of A Single Fracture Set in the Isotropic Background Media
Natural fractures in oil and gas reservoirs are a crucial factor that cannot be ignored, as they significantly influence the reservoir's petrophysical properties and hydrocarbon development. A horizontal transversely isotropic (HTI) medium composed of a single fracture set in an isotropic background is a typical anisotropic medium. Meanwhile, the shear wave splitting (SWS) is a sensitive response of such anisotropic media, resulting in the generation of fast and slow shear waves. The normal and tangential fracture weaknesses are crucial parameters that characterize the anisotropy of fractured media. We proposed an inversion method for fracture weakness based on three-component vertical seismic profiling (3CVSP) data. Firstly, assuming weak anisotropy and an HTI medium containing single fracture set, we derived a first-order linear approximation of the travel times of the converted fast and slow shear waves (PS1- and PS2-waves) with respect to fracture weakness parameters in the phase velocity domain. By solving for the horizontal projection of the slowness vector, approximate equations of the travel times of the PS1- and PS2-waves were converted from phase velocity domain to the group velocity domain. Furthermore, we devised an inversion workflow consisting of three primary steps: 1. pre-processing the VSP data to derive the travel times and azimuth of the HTI medium; 2. constructing a forward model with undetermined fracture weakness parameters; 3. following the establishment of the objective function, conducting the inversion for the fracture weakness parameters. We demonstrated the reliability of the method through numerical examples and synthetic 3CVSP data. The inversion errors are primarily influenced by the azimuth angle, with minimal influence from the receiver depth. Furthermore, a collective set of inverted results derived from all geophones are more stable and accurate than individual geophones. The application to actual 3CVSP data further confirmed the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
Velocity model-based adapted meshes using optimal transport An Efficient Cascadic Multigrid Method with Regularization Technique for 3-D Electromagnetic Finite-Element Anisotropic Modelling Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network Non-stationary adaptive S-wave suppression of ocean bottom node data Method and application of sand body thickness prediction based on virtual sample-machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1