{"title":"高效预处理最小二乘波方程迁移","authors":"Siamak Abolhassani, D. J. Verschuur","doi":"10.1190/geo2023-0048.1","DOIUrl":null,"url":null,"abstract":"Since the appearance of wave-equation migration, many have tried to improve the resolution and effectiveness of this technology. Least-squares wave-equation migration is one of those attempts that tries to fill the gap between the migration assumptions and reality in an iterative manner. However, these iterations do not come cheap. A proven solution to limit the number of least-squares iterations is to correct the gradient direction within each iteration via the action of a preconditioner that approximates the Hessian inverse. However, the Hessian computation, or even the Hessian approximation computation, in large-scale seismic imaging problems involves an expensive computational bottleneck, making it unfeasible. Therefore, we propose an efficient computation of the Hessian approximation operator, in the context of one-way wave-equation migration (WEM) in the space-frequency domain. We build the Hessian approximation operator depth by depth, considerably reducing the operator size each time it is calculated. We prove the validity of our proposed method with two numerical examples. We then extend our proposal to the framework of full-wavefield migration, which is based on WEM principles but includes interbed multiples. Finally, this efficient preconditioned least-squares full-wavefield migration is successfully applied to a dataset with strong interbed multiple scattering.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Preconditioned Least-Squares Wave-Equation Migration\",\"authors\":\"Siamak Abolhassani, D. J. Verschuur\",\"doi\":\"10.1190/geo2023-0048.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the appearance of wave-equation migration, many have tried to improve the resolution and effectiveness of this technology. Least-squares wave-equation migration is one of those attempts that tries to fill the gap between the migration assumptions and reality in an iterative manner. However, these iterations do not come cheap. A proven solution to limit the number of least-squares iterations is to correct the gradient direction within each iteration via the action of a preconditioner that approximates the Hessian inverse. However, the Hessian computation, or even the Hessian approximation computation, in large-scale seismic imaging problems involves an expensive computational bottleneck, making it unfeasible. Therefore, we propose an efficient computation of the Hessian approximation operator, in the context of one-way wave-equation migration (WEM) in the space-frequency domain. We build the Hessian approximation operator depth by depth, considerably reducing the operator size each time it is calculated. We prove the validity of our proposed method with two numerical examples. We then extend our proposal to the framework of full-wavefield migration, which is based on WEM principles but includes interbed multiples. Finally, this efficient preconditioned least-squares full-wavefield migration is successfully applied to a dataset with strong interbed multiple scattering.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0048.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0048.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Since the appearance of wave-equation migration, many have tried to improve the resolution and effectiveness of this technology. Least-squares wave-equation migration is one of those attempts that tries to fill the gap between the migration assumptions and reality in an iterative manner. However, these iterations do not come cheap. A proven solution to limit the number of least-squares iterations is to correct the gradient direction within each iteration via the action of a preconditioner that approximates the Hessian inverse. However, the Hessian computation, or even the Hessian approximation computation, in large-scale seismic imaging problems involves an expensive computational bottleneck, making it unfeasible. Therefore, we propose an efficient computation of the Hessian approximation operator, in the context of one-way wave-equation migration (WEM) in the space-frequency domain. We build the Hessian approximation operator depth by depth, considerably reducing the operator size each time it is calculated. We prove the validity of our proposed method with two numerical examples. We then extend our proposal to the framework of full-wavefield migration, which is based on WEM principles but includes interbed multiples. Finally, this efficient preconditioned least-squares full-wavefield migration is successfully applied to a dataset with strong interbed multiple scattering.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.