Seer:针对不规则问题的预测性运行时内核选择

Leon Frenot, Fernando Magno Quintão Pereira
{"title":"Seer:针对不规则问题的预测性运行时内核选择","authors":"Leon Frenot, Fernando Magno Quintão Pereira","doi":"10.1109/CGO57630.2024.10444812","DOIUrl":null,"url":null,"abstract":"Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.","PeriodicalId":517814,"journal":{"name":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"60 13","pages":"133-142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seer: Predictive Runtime Kernel Selection for Irregular Problems\",\"authors\":\"Leon Frenot, Fernando Magno Quintão Pereira\",\"doi\":\"10.1109/CGO57630.2024.10444812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.\",\"PeriodicalId\":517814,\"journal\":{\"name\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"volume\":\"60 13\",\"pages\":\"133-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO57630.2024.10444812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO57630.2024.10444812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代 GPU 专为常规问题而设计,在处理不规则数据时会出现负载不平衡的问题。在我们的工作之前,由领域专家选择最佳内核,将细粒度的不规则并行性映射到 GPU 上。相反,我们提出了一个抽象概念--Seer,用于生成一个简单、可重现、可理解的决策树选择器模型,为不规则工作负载执行运行时内核选择。为了展示我们的框架,我们在稀疏矩阵矢量乘法(SpMV)中进行了一项案例研究,其中 Seer 预测了特定数据集的最佳策略,比整个 SuiteSparse Matrix Collection 数据集的最佳单次迭代内核提高了 2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seer: Predictive Runtime Kernel Selection for Irregular Problems
Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PresCount: Effective Register Allocation for Bank Conflict Reduction High-Throughput, Formal-Methods-Assisted Fuzzing for LLVM CGO 2024 Organization SCHEMATIC: Compile-Time Checkpoint Placement and Memory Allocation for Intermittent Systems Representing Data Collections in an SSA Form
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1