{"title":"揭示非静力学对氙结构 TbPO4 中压力诱导相变的影响","authors":"Jai Sharma, C. Packard","doi":"10.3390/solids5010008","DOIUrl":null,"url":null,"abstract":"The pressure-induced phase transformations of rare earth orthophosphates (REPO4s) have become increasingly relevant in ceramic matrix composite (CMC) research; however, understanding of the shear-dependence of these transformations remains limited. This study employs diamond anvil cell experiments with three pressure media (neon, KCl, sample itself/no medium) to systematically assess the effect of shear on the phase transformations of TbPO4. Results show a lowering of the TbPO4 transformation onset pressure (Ponset) as well as an extension of the xenotime–monazite phase coexistence range under non-hydrostatic conditions. The TbPO4 Ponset under no medium (4.4(3) GPa) is the lowest REPO4 Ponset reported to date and represents a ~50% drop from the hydrostatic Ponset. Enthalpic differences likely account for lower Ponset values in TbPO4 compared to DyPO4. Experiments also show scheelite may be the post-monazite phase of TbPO4; this phase is consistent with observed and predicted REPO4 transformation pathways.","PeriodicalId":21906,"journal":{"name":"Solids","volume":"163 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the Effects of Non-Hydrostaticity on Pressure-Induced Phase Transformation in Xenotime-Structured TbPO4\",\"authors\":\"Jai Sharma, C. Packard\",\"doi\":\"10.3390/solids5010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pressure-induced phase transformations of rare earth orthophosphates (REPO4s) have become increasingly relevant in ceramic matrix composite (CMC) research; however, understanding of the shear-dependence of these transformations remains limited. This study employs diamond anvil cell experiments with three pressure media (neon, KCl, sample itself/no medium) to systematically assess the effect of shear on the phase transformations of TbPO4. Results show a lowering of the TbPO4 transformation onset pressure (Ponset) as well as an extension of the xenotime–monazite phase coexistence range under non-hydrostatic conditions. The TbPO4 Ponset under no medium (4.4(3) GPa) is the lowest REPO4 Ponset reported to date and represents a ~50% drop from the hydrostatic Ponset. Enthalpic differences likely account for lower Ponset values in TbPO4 compared to DyPO4. Experiments also show scheelite may be the post-monazite phase of TbPO4; this phase is consistent with observed and predicted REPO4 transformation pathways.\",\"PeriodicalId\":21906,\"journal\":{\"name\":\"Solids\",\"volume\":\"163 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/solids5010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solids5010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncovering the Effects of Non-Hydrostaticity on Pressure-Induced Phase Transformation in Xenotime-Structured TbPO4
The pressure-induced phase transformations of rare earth orthophosphates (REPO4s) have become increasingly relevant in ceramic matrix composite (CMC) research; however, understanding of the shear-dependence of these transformations remains limited. This study employs diamond anvil cell experiments with three pressure media (neon, KCl, sample itself/no medium) to systematically assess the effect of shear on the phase transformations of TbPO4. Results show a lowering of the TbPO4 transformation onset pressure (Ponset) as well as an extension of the xenotime–monazite phase coexistence range under non-hydrostatic conditions. The TbPO4 Ponset under no medium (4.4(3) GPa) is the lowest REPO4 Ponset reported to date and represents a ~50% drop from the hydrostatic Ponset. Enthalpic differences likely account for lower Ponset values in TbPO4 compared to DyPO4. Experiments also show scheelite may be the post-monazite phase of TbPO4; this phase is consistent with observed and predicted REPO4 transformation pathways.