采用决策树算法和支持向量机 (SVM) 预测家庭发育迟缓风险

Amanda Iksanul Putri, Yuli Syarif, Puguh Jayadi, Fadlan Arrazak, Febi Nur Salisah
{"title":"采用决策树算法和支持向量机 (SVM) 预测家庭发育迟缓风险","authors":"Amanda Iksanul Putri, Yuli Syarif, Puguh Jayadi, Fadlan Arrazak, Febi Nur Salisah","doi":"10.57152/malcom.v3i2.1228","DOIUrl":null,"url":null,"abstract":"Kondisi kekurangan gizi kronis yang disebabkan oleh asupan makanan yang tidak mencukupi sebagai akibat dari kebiasaan makan yang tidak tepat sesuai dengan gizi yang diperlukan disebut juga dengan stunting. Stunting dapat membuat fisik anak menjadi lebih pendek, selain itu dapat menghambat pertumbuhan dan perkembangan organ lain seperti ginjal, jantung, dan otak pada anak. Meningkatnya kasus stunting pada anak memerlukan upaya pencegahan secara dini. Pada penelitian ini menggunakan 18 atribut dan 5021 record data dari 10 kelurahan Kota Dumai dimana salah satu diantaranya dijadikan sebagai kelas. Pada penelitian ini menerapkan Algoritma Decision Tree dan Support Vactor Machine (SVM) untuk mengetahui algoritma mana yang tepat memproses data tersebut. Hasil prediksi dengan menggunakan Decision Tree pada penelitian ini mendapatkan nilai akurasi sebesar 96.15%, nilai recall Tidak sebesar  92.06% serta Ya sebesar 97.34% dan nilai presisi Tidak sebesar 90.99% serta Ya sebesar 97.68%. Sedangkan dengan menggunakan Algoritma SVM mendapatkan nilai akurasi sebesar 62.48%, nilai recall Tidak sebesar 99.12% serta Ya sebesar 51.80% dan nilai presisi Tidak sebesar 37.49% serta Ya sebesar 99.51%. Berdasarkan penelitian menggunakan data  tersebut dapat disimpulkan bahwa akurasai algoritma Decision Tree jauh lebih baik dibandingkan dengan algoritma SVM.","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"16 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga\",\"authors\":\"Amanda Iksanul Putri, Yuli Syarif, Puguh Jayadi, Fadlan Arrazak, Febi Nur Salisah\",\"doi\":\"10.57152/malcom.v3i2.1228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kondisi kekurangan gizi kronis yang disebabkan oleh asupan makanan yang tidak mencukupi sebagai akibat dari kebiasaan makan yang tidak tepat sesuai dengan gizi yang diperlukan disebut juga dengan stunting. Stunting dapat membuat fisik anak menjadi lebih pendek, selain itu dapat menghambat pertumbuhan dan perkembangan organ lain seperti ginjal, jantung, dan otak pada anak. Meningkatnya kasus stunting pada anak memerlukan upaya pencegahan secara dini. Pada penelitian ini menggunakan 18 atribut dan 5021 record data dari 10 kelurahan Kota Dumai dimana salah satu diantaranya dijadikan sebagai kelas. Pada penelitian ini menerapkan Algoritma Decision Tree dan Support Vactor Machine (SVM) untuk mengetahui algoritma mana yang tepat memproses data tersebut. Hasil prediksi dengan menggunakan Decision Tree pada penelitian ini mendapatkan nilai akurasi sebesar 96.15%, nilai recall Tidak sebesar  92.06% serta Ya sebesar 97.34% dan nilai presisi Tidak sebesar 90.99% serta Ya sebesar 97.68%. Sedangkan dengan menggunakan Algoritma SVM mendapatkan nilai akurasi sebesar 62.48%, nilai recall Tidak sebesar 99.12% serta Ya sebesar 51.80% dan nilai presisi Tidak sebesar 37.49% serta Ya sebesar 99.51%. Berdasarkan penelitian menggunakan data  tersebut dapat disimpulkan bahwa akurasai algoritma Decision Tree jauh lebih baik dibandingkan dengan algoritma SVM.\",\"PeriodicalId\":507205,\"journal\":{\"name\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"volume\":\"16 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/malcom.v3i2.1228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v3i2.1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于不正确的饮食习惯导致食物摄入量不足,无法满足所需营养而造成的慢性营养不良,也被称为发育迟缓。发育迟缓会使儿童身体变矮,还会抑制儿童肾脏、心脏和大脑等其他器官的生长发育。儿童发育迟缓的情况越来越多,需要及早预防。本研究使用了杜迈市 10 个城中村的 18 个属性和 5021 条数据记录,并将其中一个作为一个类。本研究采用了决策树和支持向量机(SVM)算法,以找出哪种算法适合处理数据。本研究中使用决策树算法得出的预测结果准确率为 96.15%,召回率为 92.06%(否)和 97.34%(是),精确率为 90.99%(否)和 97.68%(是)。而 SVM 算法的准确率为 62.48%,召回率为 99.12%(否)和 51.80%(是),精确率为 37.49%(否)和 99.51%(是)。根据对这些数据的研究,可以得出结论:决策树算法的准确率远远高于 SVM 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga
Kondisi kekurangan gizi kronis yang disebabkan oleh asupan makanan yang tidak mencukupi sebagai akibat dari kebiasaan makan yang tidak tepat sesuai dengan gizi yang diperlukan disebut juga dengan stunting. Stunting dapat membuat fisik anak menjadi lebih pendek, selain itu dapat menghambat pertumbuhan dan perkembangan organ lain seperti ginjal, jantung, dan otak pada anak. Meningkatnya kasus stunting pada anak memerlukan upaya pencegahan secara dini. Pada penelitian ini menggunakan 18 atribut dan 5021 record data dari 10 kelurahan Kota Dumai dimana salah satu diantaranya dijadikan sebagai kelas. Pada penelitian ini menerapkan Algoritma Decision Tree dan Support Vactor Machine (SVM) untuk mengetahui algoritma mana yang tepat memproses data tersebut. Hasil prediksi dengan menggunakan Decision Tree pada penelitian ini mendapatkan nilai akurasi sebesar 96.15%, nilai recall Tidak sebesar  92.06% serta Ya sebesar 97.34% dan nilai presisi Tidak sebesar 90.99% serta Ya sebesar 97.68%. Sedangkan dengan menggunakan Algoritma SVM mendapatkan nilai akurasi sebesar 62.48%, nilai recall Tidak sebesar 99.12% serta Ya sebesar 51.80% dan nilai presisi Tidak sebesar 37.49% serta Ya sebesar 99.51%. Berdasarkan penelitian menggunakan data  tersebut dapat disimpulkan bahwa akurasai algoritma Decision Tree jauh lebih baik dibandingkan dengan algoritma SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Interconnection between Digital Skills of Human Resources in SMEs and the Success of Digital Business Strategy Implementation Implementasi Teknologi Berbasis Web untuk Efesiensi Waktu Pencarian Lahan Parkir Peningkatan Cakupan Sinyal Wi-Fi dengan Penempatan Access Point Menggunakan Metode Probabilitas Bayesian Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix Deteksi Tingkat Kematangan Buah Tomat Menggunakan YOLOv5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1