预测儿童发育迟缓风险的机器学习模型性能比较分析

N. F. Sahamony, Terttiaavini Terttiaavini, Harsih Rianto
{"title":"预测儿童发育迟缓风险的机器学习模型性能比较分析","authors":"N. F. Sahamony, Terttiaavini Terttiaavini, Harsih Rianto","doi":"10.57152/malcom.v4i2.1210","DOIUrl":null,"url":null,"abstract":"Stunting menjadi masalah serius dalam pertumbuhan anak di Indonesia, mendorong penelitian ini untuk mengembangkan model prediksi menggunakan Machine Learning. Tujuan penelitian adalah membandingkan performa dari lima algoritma yaitu Random Forest, Logistic Regression, Naïve Bayes, SVM dan  Neural Networks untuk memprediksi stunting anak. Data stunting anak tahun 2023 dari Kota Lubuk Linggau yang digunakan dengan total 400 sampel. Metodologi penelitian melibatkan langkah inisiasi, pengembangan model linier, pembandingan hasil pengujian model, dan analisis prediksi menggunakan platform KNIME. Hasil uji menunjukkan bahwa Naïve Bayes memiliki performa tertinggi dengan akurasi = 98,57%, F1-Score = 0,99, serta recall dan precision yang sangat tinggi. Random Forest juga memberikan hasil baik dengan akurasi = 98,29%, namun Naïve Bayes diidentifikasi sebagai model terbaik. Penelitian ini memberikan kontribusi signifikan dalam upaya untuk pencegahan stunting dengan menggabungkan teknologi Machine Learning dan analisis dataset kesehatan. Dengan mengembangkan model prediksi menggunakan berbagai algoritma machine learning, diharapkan dapat membantu praktisi kesehatan dalam mengidentifikasi risiko stunting secara dini. Model yang optimal dapat digunakan sebagai alat pendukung keputusan untuk memberikan intervensi yang tepat dan efektif.","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"111 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Perbandingan Kinerja Model Machine Learning untuk Memprediksi Risiko Stunting pada Pertumbuhan Anak\",\"authors\":\"N. F. Sahamony, Terttiaavini Terttiaavini, Harsih Rianto\",\"doi\":\"10.57152/malcom.v4i2.1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stunting menjadi masalah serius dalam pertumbuhan anak di Indonesia, mendorong penelitian ini untuk mengembangkan model prediksi menggunakan Machine Learning. Tujuan penelitian adalah membandingkan performa dari lima algoritma yaitu Random Forest, Logistic Regression, Naïve Bayes, SVM dan  Neural Networks untuk memprediksi stunting anak. Data stunting anak tahun 2023 dari Kota Lubuk Linggau yang digunakan dengan total 400 sampel. Metodologi penelitian melibatkan langkah inisiasi, pengembangan model linier, pembandingan hasil pengujian model, dan analisis prediksi menggunakan platform KNIME. Hasil uji menunjukkan bahwa Naïve Bayes memiliki performa tertinggi dengan akurasi = 98,57%, F1-Score = 0,99, serta recall dan precision yang sangat tinggi. Random Forest juga memberikan hasil baik dengan akurasi = 98,29%, namun Naïve Bayes diidentifikasi sebagai model terbaik. Penelitian ini memberikan kontribusi signifikan dalam upaya untuk pencegahan stunting dengan menggabungkan teknologi Machine Learning dan analisis dataset kesehatan. Dengan mengembangkan model prediksi menggunakan berbagai algoritma machine learning, diharapkan dapat membantu praktisi kesehatan dalam mengidentifikasi risiko stunting secara dini. Model yang optimal dapat digunakan sebagai alat pendukung keputusan untuk memberikan intervensi yang tepat dan efektif.\",\"PeriodicalId\":507205,\"journal\":{\"name\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"volume\":\"111 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/malcom.v4i2.1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v4i2.1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发育迟缓是印度尼西亚儿童成长过程中的一个严重问题,这促使本研究利用机器学习技术开发一个预测模型。研究目的是比较随机森林、逻辑回归、奈夫贝叶斯、SVM 和神经网络这五种算法在预测儿童发育迟缓方面的性能。研究使用了卢布林高市 2023 年的儿童发育迟缓数据,共计 400 个样本。研究方法包括启动步骤、线性模型开发、模型测试结果比较以及使用 KNIME 平台进行预测分析。测试结果表明,奈伊夫贝叶斯模型的准确率为 98.57%,F1 分数为 0.99,召回率和精确率都非常高。随机森林模型的准确率也达到了 98.29%,但 Naïve Bayes 被认为是最佳模型。这项研究通过将机器学习技术与健康数据集分析相结合,为预防发育迟缓做出了重大贡献。通过使用各种机器学习算法开发预测模型,有望帮助医疗工作者及早发现发育迟缓的风险。最佳模型可用作决策支持工具,提供适当而有效的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Perbandingan Kinerja Model Machine Learning untuk Memprediksi Risiko Stunting pada Pertumbuhan Anak
Stunting menjadi masalah serius dalam pertumbuhan anak di Indonesia, mendorong penelitian ini untuk mengembangkan model prediksi menggunakan Machine Learning. Tujuan penelitian adalah membandingkan performa dari lima algoritma yaitu Random Forest, Logistic Regression, Naïve Bayes, SVM dan  Neural Networks untuk memprediksi stunting anak. Data stunting anak tahun 2023 dari Kota Lubuk Linggau yang digunakan dengan total 400 sampel. Metodologi penelitian melibatkan langkah inisiasi, pengembangan model linier, pembandingan hasil pengujian model, dan analisis prediksi menggunakan platform KNIME. Hasil uji menunjukkan bahwa Naïve Bayes memiliki performa tertinggi dengan akurasi = 98,57%, F1-Score = 0,99, serta recall dan precision yang sangat tinggi. Random Forest juga memberikan hasil baik dengan akurasi = 98,29%, namun Naïve Bayes diidentifikasi sebagai model terbaik. Penelitian ini memberikan kontribusi signifikan dalam upaya untuk pencegahan stunting dengan menggabungkan teknologi Machine Learning dan analisis dataset kesehatan. Dengan mengembangkan model prediksi menggunakan berbagai algoritma machine learning, diharapkan dapat membantu praktisi kesehatan dalam mengidentifikasi risiko stunting secara dini. Model yang optimal dapat digunakan sebagai alat pendukung keputusan untuk memberikan intervensi yang tepat dan efektif.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Interconnection between Digital Skills of Human Resources in SMEs and the Success of Digital Business Strategy Implementation Implementasi Teknologi Berbasis Web untuk Efesiensi Waktu Pencarian Lahan Parkir Peningkatan Cakupan Sinyal Wi-Fi dengan Penempatan Access Point Menggunakan Metode Probabilitas Bayesian Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix Deteksi Tingkat Kematangan Buah Tomat Menggunakan YOLOv5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1