利用 KVN 单碟观测探测 NGC 2903 星系外异常微波发射

Panomporn Poojon, Aeree Chung, T. Hoang, J. Baek, Hiroyuki Nakanishi, Tomoya Hirota, Chao-Wei Tsai
{"title":"利用 KVN 单碟观测探测 NGC 2903 星系外异常微波发射","authors":"Panomporn Poojon, Aeree Chung, T. Hoang, J. Baek, Hiroyuki Nakanishi, Tomoya Hirota, Chao-Wei Tsai","doi":"10.3847/1538-4357/ad1bc8","DOIUrl":null,"url":null,"abstract":"\n We present the results of the single-dish observations using the Korean VLBI Network to search for anomalous microwave emission (AME) in nearby galaxies. The targets were selected from ‘Mapping the dense molecular gas in the strongest star-forming galaxies' (MALATANG), a legacy survey project of the James Clerk Maxwell Telescope. The MALATANG galaxies are good representatives of local galaxies with enhanced nuclear activity associated with star formation and/or active galactic nuclei (AGNs), providing IR-bright galaxy samples; thus, they are good candidates for AME hosts. Combining with ancillary data, we investigated the radio–IR spectral energy distribution (SED), while searching for AME signals in five galaxies. The AME in NGC 2903 was well detected at a significant confidence level, whereas that in NGC 2146 and M82 was marginal. NGC 1068 and Arp 299 indicated no significant hints, and we provide upper limits for the AME. The best-fit SED exhibited local peaks of the AME components at higher frequencies and with stronger peak fluxes than those in previous studies. This suggested that AME originates from denser environments such as molecular clouds or photodissociation regions rather than warm neutral/ionized medium as commonly suggested by previous studies. Further, our AME-detected targets were observed to exhibit higher specific star formation rates than the other extragalactic AME hosts. Furthermore, AME favored starburst galaxies among our sample rather than AGN hosts. Consequently, this might imply that AGNs are excessively harsh environments for tiny dust to survive.","PeriodicalId":504209,"journal":{"name":"The Astrophysical Journal","volume":"106 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Extragalactic Anomalous Microwave Emission in NGC 2903 Using KVN Single-dish Observations\",\"authors\":\"Panomporn Poojon, Aeree Chung, T. Hoang, J. Baek, Hiroyuki Nakanishi, Tomoya Hirota, Chao-Wei Tsai\",\"doi\":\"10.3847/1538-4357/ad1bc8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present the results of the single-dish observations using the Korean VLBI Network to search for anomalous microwave emission (AME) in nearby galaxies. The targets were selected from ‘Mapping the dense molecular gas in the strongest star-forming galaxies' (MALATANG), a legacy survey project of the James Clerk Maxwell Telescope. The MALATANG galaxies are good representatives of local galaxies with enhanced nuclear activity associated with star formation and/or active galactic nuclei (AGNs), providing IR-bright galaxy samples; thus, they are good candidates for AME hosts. Combining with ancillary data, we investigated the radio–IR spectral energy distribution (SED), while searching for AME signals in five galaxies. The AME in NGC 2903 was well detected at a significant confidence level, whereas that in NGC 2146 and M82 was marginal. NGC 1068 and Arp 299 indicated no significant hints, and we provide upper limits for the AME. The best-fit SED exhibited local peaks of the AME components at higher frequencies and with stronger peak fluxes than those in previous studies. This suggested that AME originates from denser environments such as molecular clouds or photodissociation regions rather than warm neutral/ionized medium as commonly suggested by previous studies. Further, our AME-detected targets were observed to exhibit higher specific star formation rates than the other extragalactic AME hosts. Furthermore, AME favored starburst galaxies among our sample rather than AGN hosts. Consequently, this might imply that AGNs are excessively harsh environments for tiny dust to survive.\",\"PeriodicalId\":504209,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"106 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad1bc8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad1bc8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了利用韩国 VLBI 网络搜索附近星系异常微波发射(AME)的单碟观测结果。这些目标是从詹姆斯-克拉克-麦克斯韦望远镜(James Clerk Maxwell Telescope)的一个遗留观测项目 "测绘最强恒星形成星系中的致密分子气体"(MALATANG)中挑选出来的。MALATANG星系是与恒星形成和/或活动星系核(AGN)相关的核活动增强的本地星系的良好代表,提供了红外亮星系样本;因此,它们是AME宿主的良好候选者。结合辅助数据,我们研究了射电-红外光谱能量分布(SED),同时在五个星系中寻找AME信号。NGC 2903 星系的 AME 在很大的置信水平上被很好地探测到,而 NGC 2146 和 M82 星系的 AME 信号则很微弱。NGC 1068 和 Arp 299 没有明显的提示,我们提供了 AME 的上限。与以前的研究相比,最佳拟合 SED 显示了 AME 成分在更高频率和更强峰值通量下的局部峰值。这表明AME来源于分子云或光解区域等更稠密的环境,而不是以往研究通常认为的温暖的中性/电离介质。此外,与其他银河系外 AME 宿主相比,我们观测到的 AME 目标表现出更高的特定恒星形成率。此外,在我们的样本中,AME更偏爱星爆星系,而不是AGN宿主。因此,这可能意味着AGN对于微小尘埃来说是一个过于严酷的生存环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Extragalactic Anomalous Microwave Emission in NGC 2903 Using KVN Single-dish Observations
We present the results of the single-dish observations using the Korean VLBI Network to search for anomalous microwave emission (AME) in nearby galaxies. The targets were selected from ‘Mapping the dense molecular gas in the strongest star-forming galaxies' (MALATANG), a legacy survey project of the James Clerk Maxwell Telescope. The MALATANG galaxies are good representatives of local galaxies with enhanced nuclear activity associated with star formation and/or active galactic nuclei (AGNs), providing IR-bright galaxy samples; thus, they are good candidates for AME hosts. Combining with ancillary data, we investigated the radio–IR spectral energy distribution (SED), while searching for AME signals in five galaxies. The AME in NGC 2903 was well detected at a significant confidence level, whereas that in NGC 2146 and M82 was marginal. NGC 1068 and Arp 299 indicated no significant hints, and we provide upper limits for the AME. The best-fit SED exhibited local peaks of the AME components at higher frequencies and with stronger peak fluxes than those in previous studies. This suggested that AME originates from denser environments such as molecular clouds or photodissociation regions rather than warm neutral/ionized medium as commonly suggested by previous studies. Further, our AME-detected targets were observed to exhibit higher specific star formation rates than the other extragalactic AME hosts. Furthermore, AME favored starburst galaxies among our sample rather than AGN hosts. Consequently, this might imply that AGNs are excessively harsh environments for tiny dust to survive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parker Solar Probe Observations of Magnetic Reconnection Exhausts in Quiescent Plasmas near the Sun Erratum: “Inferences from Surface Brightness Fluctuations of Zwicky 3146 via the Sunyaev–Zel’dovich Effect and X-Ray Observations” (2023, ApJ, 951, 41) Erratum: “On Stellar Evolution in a Neutrino Hertzsprung–Russell Diagram” (2020, ApJ, 893, 133) Three-dimensional Magnetohydrodynamic Simulations of Periodic Variations of Ganymede’s Footprint Observability of Substructures in the Planet-forming Disk in the (Sub)centimeter Wavelength with SKA and ngVLA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1