{"title":"将氘化冠烯掺入笼状钠长石型多孔有机盐并改善其室温磷光特性","authors":"Hiroi Sei, Kouki Oka, T. Furuta, N. Tohnai","doi":"10.1093/bulcsj/uoad023","DOIUrl":null,"url":null,"abstract":"\n Host materials with external heavy atom effects do not change the chemical structures of incorporated luminescent molecules but promote intersystem crossing from the excited singlet state to the excited triplet state, which induces room-temperature phosphorescence (RTP). The deuteration of luminescent molecules suppresses non-radiative deactivation via C–H stretching vibration; therefore, the improvement of both phosphorescence lifetime and quantum efficiency (i.e. isotope effect) is expected. Although a combination of the external heavy atom effect and isotope effect could be expected to improve phosphorescent performances dramatically, an environment with a strong external heavy atom effect (density of iodine atoms ≥0.65 gcm−3) increases non-radiative deactivation via spin-orbit coupling; therefore, the isotope effect is hindered, and the phosphorescent lifetime and quantum efficiency are not usually improved. In the current work, we constructed cage-like sodalite-type porous organic salts (s-POSs) where the density of iodine atoms (0.55 gcm−3) was moderate (0.13 ̶ 0.65 gcm−3). Incorporation of a deuterated representative luminescent molecule such as coronene (coronene-d12) into s-POSs enabled the exerting of both the external heavy atom effect and isotope effect, which successfully improved both RTP lifetime (1.1 times) and quantum efficiency (1.6 times) over those of an incorporated ordinary coronene (coronene-h12).","PeriodicalId":9511,"journal":{"name":"Bulletin of the Chemical Society of Japan","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporation of deuterated coronene into cage-like sodalite-type porous organic salts and improvement of room-temperature phosphorescence properties\",\"authors\":\"Hiroi Sei, Kouki Oka, T. Furuta, N. Tohnai\",\"doi\":\"10.1093/bulcsj/uoad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Host materials with external heavy atom effects do not change the chemical structures of incorporated luminescent molecules but promote intersystem crossing from the excited singlet state to the excited triplet state, which induces room-temperature phosphorescence (RTP). The deuteration of luminescent molecules suppresses non-radiative deactivation via C–H stretching vibration; therefore, the improvement of both phosphorescence lifetime and quantum efficiency (i.e. isotope effect) is expected. Although a combination of the external heavy atom effect and isotope effect could be expected to improve phosphorescent performances dramatically, an environment with a strong external heavy atom effect (density of iodine atoms ≥0.65 gcm−3) increases non-radiative deactivation via spin-orbit coupling; therefore, the isotope effect is hindered, and the phosphorescent lifetime and quantum efficiency are not usually improved. In the current work, we constructed cage-like sodalite-type porous organic salts (s-POSs) where the density of iodine atoms (0.55 gcm−3) was moderate (0.13 ̶ 0.65 gcm−3). Incorporation of a deuterated representative luminescent molecule such as coronene (coronene-d12) into s-POSs enabled the exerting of both the external heavy atom effect and isotope effect, which successfully improved both RTP lifetime (1.1 times) and quantum efficiency (1.6 times) over those of an incorporated ordinary coronene (coronene-h12).\",\"PeriodicalId\":9511,\"journal\":{\"name\":\"Bulletin of the Chemical Society of Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Chemical Society of Japan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/bulcsj/uoad023\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Japan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/bulcsj/uoad023","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Incorporation of deuterated coronene into cage-like sodalite-type porous organic salts and improvement of room-temperature phosphorescence properties
Host materials with external heavy atom effects do not change the chemical structures of incorporated luminescent molecules but promote intersystem crossing from the excited singlet state to the excited triplet state, which induces room-temperature phosphorescence (RTP). The deuteration of luminescent molecules suppresses non-radiative deactivation via C–H stretching vibration; therefore, the improvement of both phosphorescence lifetime and quantum efficiency (i.e. isotope effect) is expected. Although a combination of the external heavy atom effect and isotope effect could be expected to improve phosphorescent performances dramatically, an environment with a strong external heavy atom effect (density of iodine atoms ≥0.65 gcm−3) increases non-radiative deactivation via spin-orbit coupling; therefore, the isotope effect is hindered, and the phosphorescent lifetime and quantum efficiency are not usually improved. In the current work, we constructed cage-like sodalite-type porous organic salts (s-POSs) where the density of iodine atoms (0.55 gcm−3) was moderate (0.13 ̶ 0.65 gcm−3). Incorporation of a deuterated representative luminescent molecule such as coronene (coronene-d12) into s-POSs enabled the exerting of both the external heavy atom effect and isotope effect, which successfully improved both RTP lifetime (1.1 times) and quantum efficiency (1.6 times) over those of an incorporated ordinary coronene (coronene-h12).
期刊介绍:
The Bulletin of the Chemical Society of Japan (BCSJ) is devoted to the publication of scientific research papers in the fields of Theoretical and Physical Chemistry, Analytical and Inorganic Chemistry, Organic and Biological Chemistry, and Applied and Materials Chemistry. BCSJ appears as a monthly journal online and in advance with three kinds of papers (Accounts, Articles, and Short Articles) describing original research. The purpose of BCSJ is to select and publish the most important papers with the broadest significance to the chemistry community in general. The Chemical Society of Japan hopes all visitors will notice the usefulness of our journal and the abundance of topics, and welcomes more submissions from scientists all over the world.