{"title":"使用并行双种群粒子群优化算法的变分数据同化方法","authors":"Zhongjian Wu, Junyan Li","doi":"10.1051/wujns/2024291059","DOIUrl":null,"url":null,"abstract":"In recent years, numerical weather forecasting has been increasingly emphasized. Variational data assimilation furnishes precise initial values for numerical forecasting models, constituting an inherently nonlinear optimization challenge. The enormity of the dataset under consideration gives rise to substantial computational burdens, complex modeling, and high hardware requirements. This paper employs the Dual-Population Particle Swarm Optimization (DPSO) algorithm in variational data assimilation to enhance assimilation accuracy. By harnessing parallel computing principles, the paper introduces the Parallel Dual-Population Particle Swarm Optimization (PDPSO) Algorithm to reduce the algorithm processing time. Simulations were carried out using partial differential equations, and comparisons in terms of time and accuracy were made against DPSO, the Dynamic Weight Particle Swarm Algorithm (PSOCIWAC), and the Time-Varying Double Compression Factor Particle Swarm Algorithm (PSOTVCF). Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO. Regarding processing time, PDPSO is 40% faster than PSOCIWAC and PSOTVCF and 70% faster than DPSO.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":"295 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Data Assimilation Method Using Parallel Dual Populations Particle Swarm Optimization Algorithm\",\"authors\":\"Zhongjian Wu, Junyan Li\",\"doi\":\"10.1051/wujns/2024291059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, numerical weather forecasting has been increasingly emphasized. Variational data assimilation furnishes precise initial values for numerical forecasting models, constituting an inherently nonlinear optimization challenge. The enormity of the dataset under consideration gives rise to substantial computational burdens, complex modeling, and high hardware requirements. This paper employs the Dual-Population Particle Swarm Optimization (DPSO) algorithm in variational data assimilation to enhance assimilation accuracy. By harnessing parallel computing principles, the paper introduces the Parallel Dual-Population Particle Swarm Optimization (PDPSO) Algorithm to reduce the algorithm processing time. Simulations were carried out using partial differential equations, and comparisons in terms of time and accuracy were made against DPSO, the Dynamic Weight Particle Swarm Algorithm (PSOCIWAC), and the Time-Varying Double Compression Factor Particle Swarm Algorithm (PSOTVCF). Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO. Regarding processing time, PDPSO is 40% faster than PSOCIWAC and PSOTVCF and 70% faster than DPSO.\",\"PeriodicalId\":23976,\"journal\":{\"name\":\"Wuhan University Journal of Natural Sciences\",\"volume\":\"295 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wuhan University Journal of Natural Sciences\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/wujns/2024291059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2024291059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
Variational Data Assimilation Method Using Parallel Dual Populations Particle Swarm Optimization Algorithm
In recent years, numerical weather forecasting has been increasingly emphasized. Variational data assimilation furnishes precise initial values for numerical forecasting models, constituting an inherently nonlinear optimization challenge. The enormity of the dataset under consideration gives rise to substantial computational burdens, complex modeling, and high hardware requirements. This paper employs the Dual-Population Particle Swarm Optimization (DPSO) algorithm in variational data assimilation to enhance assimilation accuracy. By harnessing parallel computing principles, the paper introduces the Parallel Dual-Population Particle Swarm Optimization (PDPSO) Algorithm to reduce the algorithm processing time. Simulations were carried out using partial differential equations, and comparisons in terms of time and accuracy were made against DPSO, the Dynamic Weight Particle Swarm Algorithm (PSOCIWAC), and the Time-Varying Double Compression Factor Particle Swarm Algorithm (PSOTVCF). Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO. Regarding processing time, PDPSO is 40% faster than PSOCIWAC and PSOTVCF and 70% faster than DPSO.
期刊介绍:
Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.