从模型性能到决策支持--计算毒理学在化学品安全评估中的兴起

IF 3.1 Q2 TOXICOLOGY Computational Toxicology Pub Date : 2024-09-01 DOI:10.1016/j.comtox.2024.100303
{"title":"从模型性能到决策支持--计算毒理学在化学品安全评估中的兴起","authors":"","doi":"10.1016/j.comtox.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><p>In silico systems can reduce the need for (animal) testing, increase human safety and support critical decisions. They are increasingly being cited in regulatory guidance documents and are forming a key element of New Approach Methodologies (NAMs). Performance is being improved through a combination of new methodologies, increased understanding of mechanistic toxicology and access to experimental data from new assays. Trust and acceptance of in silico methodologies requires them to be accurate and transparent while also providing an explanation and confidence-assessment for each prediction. This paper summarises the state-of-art of in silico models and provides an action plan for further advances in this field.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"31 ","pages":"Article 100303"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From model performance to decision support – The rise of computational toxicology in chemical safety assessments\",\"authors\":\"\",\"doi\":\"10.1016/j.comtox.2024.100303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In silico systems can reduce the need for (animal) testing, increase human safety and support critical decisions. They are increasingly being cited in regulatory guidance documents and are forming a key element of New Approach Methodologies (NAMs). Performance is being improved through a combination of new methodologies, increased understanding of mechanistic toxicology and access to experimental data from new assays. Trust and acceptance of in silico methodologies requires them to be accurate and transparent while also providing an explanation and confidence-assessment for each prediction. This paper summarises the state-of-art of in silico models and provides an action plan for further advances in this field.</p></div>\",\"PeriodicalId\":37651,\"journal\":{\"name\":\"Computational Toxicology\",\"volume\":\"31 \",\"pages\":\"Article 100303\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468111324000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硅学系统可以减少对(动物)试验的需求,提高人体安全性,并为关键决策提供支持。它们越来越多地被引用到监管指导文件中,并成为新方法(NAMs)的关键要素。通过结合使用新方法、加深对机理毒理学的理解以及获取新检测方法的实验数据,这些方法的性能正在不断提高。对硅学方法的信任和接受要求这些方法准确、透明,同时对每项预测提供解释和置信度评估。本文总结了硅学模型的最新进展,并提出了进一步推动该领域发展的行动计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From model performance to decision support – The rise of computational toxicology in chemical safety assessments

In silico systems can reduce the need for (animal) testing, increase human safety and support critical decisions. They are increasingly being cited in regulatory guidance documents and are forming a key element of New Approach Methodologies (NAMs). Performance is being improved through a combination of new methodologies, increased understanding of mechanistic toxicology and access to experimental data from new assays. Trust and acceptance of in silico methodologies requires them to be accurate and transparent while also providing an explanation and confidence-assessment for each prediction. This paper summarises the state-of-art of in silico models and provides an action plan for further advances in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
期刊最新文献
Reconstruction of exposure to volatile organic compounds from venous blood concentration and an uncertain physiologically-based pharmacokinetic model Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework Quantitative prediction of hemolytic activity of peptides Species specific kinetics of imidacloprid and carbendazim in mouse and rat and consequences for biomonitoring In silico analysis of the melamine structural analogues interaction with calcium-sensing receptor: A potential for nephrotoxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1