基于区块链的卫星频谱共享场景下异常频谱使用的 MCS 检测框架

Ning Yang, Heng Wang, Jingming Hu, Bangning Zhang, D. Guo, Yuan Liu
{"title":"基于区块链的卫星频谱共享场景下异常频谱使用的 MCS 检测框架","authors":"Ning Yang, Heng Wang, Jingming Hu, Bangning Zhang, D. Guo, Yuan Liu","doi":"10.23919/JCC.fa.2023-0424.202402","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing (MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good (BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain-based MCS detection framework of abnormal spectrum usage for satellite spectrum sharing scenario\",\"authors\":\"Ning Yang, Heng Wang, Jingming Hu, Bangning Zhang, D. Guo, Yuan Liu\",\"doi\":\"10.23919/JCC.fa.2023-0424.202402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing (MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good (BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.\",\"PeriodicalId\":504777,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.fa.2023-0424.202402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0424.202402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了卫星频谱共享系统之间的异常频谱使用问题,以支持多卫星频谱共存。考虑到监测成本、低轨道卫星的移动性及其信号的指向性,传统的监测方法已不再适用,尤其是在多功率电平的情况下。移动群感(MCS)作为一种新技术,可以充分利用闲置资源完成各种感知任务。然而,传统的 MCS 严重依赖于集中式服务器,容易受到单点故障攻击。因此,我们用基于区块链的分布式服务器取代原有的中心化服务器,以实现其安全性。因此,在这项工作中,我们提出了一种基于区块链的 MCS 框架,其中详细解释了该框架如何在卫星间频谱共享系统中实现异常频率行为监测。然后,在一定的误报概率下,我们提出了一种基于混合假设检验的异常频谱检测算法,分别在单功率电平和多功率电平场景下最大化检测概率。最后,我们还提出了一种 "劣币驱逐良币"(BooG)检测器,以减轻区块链节点的计算压力。仿真结果表明了所提框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blockchain-based MCS detection framework of abnormal spectrum usage for satellite spectrum sharing scenario
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing (MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good (BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intellicise model transmission for semantic communication in intelligence-native 6G networks Variational learned talking-head semantic coded transmission system Physical-layer secret key generation for dual-task scenarios Intelligent dynamic heterogeneous redundancy architecture for IoT systems Joint optimization for on-demand deployment of UAVs and spectrum allocation in UAVs-assisted communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1