用于下一代疫苗接种的环保材料:从概念到临床现实

SmartMat Pub Date : 2024-01-31 DOI:10.1002/smm2.1274
Neha Kaushik, Paritosh Patel, Ravi Gupta, Apurva Jaiswal, Manorma Negi, Shweta B Borkar, Yogendra Kumar Mishra, June Hyun Kim, Eun Ha Choi, N. Kaushik
{"title":"用于下一代疫苗接种的环保材料:从概念到临床现实","authors":"Neha Kaushik, Paritosh Patel, Ravi Gupta, Apurva Jaiswal, Manorma Negi, Shweta B Borkar, Yogendra Kumar Mishra, June Hyun Kim, Eun Ha Choi, N. Kaushik","doi":"10.1002/smm2.1274","DOIUrl":null,"url":null,"abstract":"The vaccine is a premier healthcare intervention strategy in the battle against infectious infections. However, the development and production of vaccines present challenges in terms of complexity, cost, and time consumption. Alternative methodologies, such as nonthermal plasma and plant‐based technologies, have emerged as potential alternatives for conventional vaccine manufacturing processes. While plasma‐based approaches offer a rapid and efficient pathogen inactivation method devoid of harsh reagents, plant‐based techniques present a more economically viable and scalable avenue for vaccine production. The imperative urges these approaches to address pressing global health challenges posed by emerging and recurring infectious diseases, surpassing the limitations of traditional vaccine fabrication methods. The primary goal of this review is to provide a comprehensive overview of the current research landscape, covering conceptualization, production, and potential advantages of plasma‐based and plant‐based vaccines. Furthermore, exploring the obstacles and opportunities intrinsic to these strategies is undertaken, elucidating their potential impact on vaccination strategies. This systematic presentation specifies a detailed outline of recent vaccine research and developments, emphasizing the possibility of advanced green approaches to produce effective and secure vaccination programs.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco‐friendly materials for next‐generation vaccination: From concept to clinical reality\",\"authors\":\"Neha Kaushik, Paritosh Patel, Ravi Gupta, Apurva Jaiswal, Manorma Negi, Shweta B Borkar, Yogendra Kumar Mishra, June Hyun Kim, Eun Ha Choi, N. Kaushik\",\"doi\":\"10.1002/smm2.1274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vaccine is a premier healthcare intervention strategy in the battle against infectious infections. However, the development and production of vaccines present challenges in terms of complexity, cost, and time consumption. Alternative methodologies, such as nonthermal plasma and plant‐based technologies, have emerged as potential alternatives for conventional vaccine manufacturing processes. While plasma‐based approaches offer a rapid and efficient pathogen inactivation method devoid of harsh reagents, plant‐based techniques present a more economically viable and scalable avenue for vaccine production. The imperative urges these approaches to address pressing global health challenges posed by emerging and recurring infectious diseases, surpassing the limitations of traditional vaccine fabrication methods. The primary goal of this review is to provide a comprehensive overview of the current research landscape, covering conceptualization, production, and potential advantages of plasma‐based and plant‐based vaccines. Furthermore, exploring the obstacles and opportunities intrinsic to these strategies is undertaken, elucidating their potential impact on vaccination strategies. This systematic presentation specifies a detailed outline of recent vaccine research and developments, emphasizing the possibility of advanced green approaches to produce effective and secure vaccination programs.\",\"PeriodicalId\":21794,\"journal\":{\"name\":\"SmartMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SmartMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smm2.1274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疫苗是抗击传染性感染的首要医疗干预策略。然而,疫苗的开发和生产在复杂性、成本和时间消耗方面都存在挑战。非热等离子体和植物技术等替代方法已成为传统疫苗生产工艺的潜在替代方法。基于等离子体的方法提供了一种快速高效的病原体灭活方法,无需使用刺激性试剂,而基于植物的技术则为疫苗生产提供了一种更经济可行且可扩展的途径。当务之急是采用这些方法来应对新发和复发传染病带来的紧迫的全球健康挑战,超越传统疫苗制造方法的局限性。本综述的主要目的是全面概述当前的研究状况,包括基于血浆和植物的疫苗的概念化、生产和潜在优势。此外,还探讨了这些策略的内在障碍和机遇,阐明了它们对疫苗接种策略的潜在影响。本系统性报告详细概述了近期的疫苗研究和发展,强调了先进的绿色方法在制定有效、安全的疫苗接种计划方面的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eco‐friendly materials for next‐generation vaccination: From concept to clinical reality
The vaccine is a premier healthcare intervention strategy in the battle against infectious infections. However, the development and production of vaccines present challenges in terms of complexity, cost, and time consumption. Alternative methodologies, such as nonthermal plasma and plant‐based technologies, have emerged as potential alternatives for conventional vaccine manufacturing processes. While plasma‐based approaches offer a rapid and efficient pathogen inactivation method devoid of harsh reagents, plant‐based techniques present a more economically viable and scalable avenue for vaccine production. The imperative urges these approaches to address pressing global health challenges posed by emerging and recurring infectious diseases, surpassing the limitations of traditional vaccine fabrication methods. The primary goal of this review is to provide a comprehensive overview of the current research landscape, covering conceptualization, production, and potential advantages of plasma‐based and plant‐based vaccines. Furthermore, exploring the obstacles and opportunities intrinsic to these strategies is undertaken, elucidating their potential impact on vaccination strategies. This systematic presentation specifies a detailed outline of recent vaccine research and developments, emphasizing the possibility of advanced green approaches to produce effective and secure vaccination programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral gypsum with high‐performance mechanical properties induced by self‐assembly of chiral amino acid on an amorphous mineral Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system Coral‐inspired anti‐biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri‐implant infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1