{"title":"开发和验证用于直接墨水写入 3D 打印机的低成本 UV 固化系统","authors":"A. Riyaz Ahmed, V. Mugendiran","doi":"10.1177/09544089241228941","DOIUrl":null,"url":null,"abstract":"Existing Direct Ink Write 3D printers use three axis robotic drives with high-cost extrusion system and no inbuilt curing system to cure the polymer inks. This article focusses on the development of a low-cost photopolymer ultraviolet (UV) light curing system for Direct Ink Write 3D printers and optimizing the print parameters. An UV light-emitting diode (LED) light curing setup consisting of UV LED strips, UV LED holder, and a nozzle shield is designed and fabricated. The photocuring of the polymer ink is with the help of low-cost UV LED strips emitting UV light in the wavelength of 405 nm. The effect of nozzle type, stand-off distance and printing speed on the layer height and layer width were calculated. The gel content was determined by Soxhlet extraction and the maximum gel content was achieved in 120 s. The setup was also able to fabricate complex shapes like hollow cone and a hollow bend pipe without any supports which validates the effectiveness of the curing system.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"227 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a low-cost UV curing system for Direct Ink Write 3D printers\",\"authors\":\"A. Riyaz Ahmed, V. Mugendiran\",\"doi\":\"10.1177/09544089241228941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Direct Ink Write 3D printers use three axis robotic drives with high-cost extrusion system and no inbuilt curing system to cure the polymer inks. This article focusses on the development of a low-cost photopolymer ultraviolet (UV) light curing system for Direct Ink Write 3D printers and optimizing the print parameters. An UV light-emitting diode (LED) light curing setup consisting of UV LED strips, UV LED holder, and a nozzle shield is designed and fabricated. The photocuring of the polymer ink is with the help of low-cost UV LED strips emitting UV light in the wavelength of 405 nm. The effect of nozzle type, stand-off distance and printing speed on the layer height and layer width were calculated. The gel content was determined by Soxhlet extraction and the maximum gel content was achieved in 120 s. The setup was also able to fabricate complex shapes like hollow cone and a hollow bend pipe without any supports which validates the effectiveness of the curing system.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"227 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241228941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241228941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
现有的直接墨水写入式三维打印机使用三轴机器人驱动器和高成本挤出系统,没有内置固化系统来固化聚合物墨水。本文重点介绍为直接墨水写入式三维打印机开发低成本光聚合物紫外线(UV)光固化系统以及优化打印参数。我们设计并制造了一种紫外线发光二极管(LED)光固化装置,由紫外线发光二极管条、紫外线发光二极管支架和喷嘴防护罩组成。聚合物油墨的光固化借助了低成本的 UV LED 灯条,其发出的紫外线波长为 405 纳米。计算了喷嘴类型、间距和打印速度对层高和层宽的影响。通过索氏提取法测定了凝胶含量,120 秒后凝胶含量达到最大值。该装置还能在没有任何支撑物的情况下制造出空心锥体和空心弯管等复杂形状,从而验证了固化系统的有效性。
Development and validation of a low-cost UV curing system for Direct Ink Write 3D printers
Existing Direct Ink Write 3D printers use three axis robotic drives with high-cost extrusion system and no inbuilt curing system to cure the polymer inks. This article focusses on the development of a low-cost photopolymer ultraviolet (UV) light curing system for Direct Ink Write 3D printers and optimizing the print parameters. An UV light-emitting diode (LED) light curing setup consisting of UV LED strips, UV LED holder, and a nozzle shield is designed and fabricated. The photocuring of the polymer ink is with the help of low-cost UV LED strips emitting UV light in the wavelength of 405 nm. The effect of nozzle type, stand-off distance and printing speed on the layer height and layer width were calculated. The gel content was determined by Soxhlet extraction and the maximum gel content was achieved in 120 s. The setup was also able to fabricate complex shapes like hollow cone and a hollow bend pipe without any supports which validates the effectiveness of the curing system.