{"title":"利用 Xception、迁移学习和置换改进钢铁表面缺陷的分类","authors":"Popong Setiawati, Adhitio Satyo Bayangkari Karno, Widi Hastomo, Iwan Setiawan","doi":"10.57152/malcom.v4i1.1258","DOIUrl":null,"url":null,"abstract":"Kualitas permukaan baja yang diproduksi sangat penting untuk meningkatkan daya saing dalam industri baja. Tingginya tingkat cacat pada permukaan baja merupakan masalah serius yang berdampak pada kualitas keluaran. Pengendalian yang masih dilakukan secara manual dan visual saat ini hanya dapat dilakukan oleh orang-orang dengan bakat dan keahlian tertentu. Pengamatan dengan metode konvensional ini memerlukan waktu yang lama, lamban, dan presisi yang rendah. Saat ini, perkembangan teknik pembelajaran mendalam memungkinkan deteksi cacat permukaan baja secara otomatis dengan tingkat akurasi yang tinggi. Arsitektur Xception digunakan dalam pekerjaan ini untuk menerapkan strategi pembelajaran mendalam. Teknik permutasi dan augmentasi digunakan untuk mengatasi ketidakseimbangan data. Model yang dikembangkan dapat membedakan empat jenis cacat pada permukaan baja. Koleksi 7.095 foto permukaan baja digunakan dalam prosedur pelatihan. Jika dibandingkan dengan tidak menggunakan transfer learning, hasil pengukuran kinerja proses pelatihan dengan menggunakan transfer learning (Imagenet) menunjukkan hasil yang lebih baik. Pelatihan pembelajaran transfer menghasilkan skor akurasi masing-masing sebesar 94,9% dan 97,7% untuk data pelatihan dan validasi. Sedangkan hasil penilaian nilai kerugian untuk data latih dan validasi masing-masing sebesar 19,4% dan 14,4%.","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"676 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Menggunakan Xception, Transfer Learning, dan Permutasi untuk Meningkatkan Klasifikasi Ketidaksempurnaan Permukaan Baja\",\"authors\":\"Popong Setiawati, Adhitio Satyo Bayangkari Karno, Widi Hastomo, Iwan Setiawan\",\"doi\":\"10.57152/malcom.v4i1.1258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kualitas permukaan baja yang diproduksi sangat penting untuk meningkatkan daya saing dalam industri baja. Tingginya tingkat cacat pada permukaan baja merupakan masalah serius yang berdampak pada kualitas keluaran. Pengendalian yang masih dilakukan secara manual dan visual saat ini hanya dapat dilakukan oleh orang-orang dengan bakat dan keahlian tertentu. Pengamatan dengan metode konvensional ini memerlukan waktu yang lama, lamban, dan presisi yang rendah. Saat ini, perkembangan teknik pembelajaran mendalam memungkinkan deteksi cacat permukaan baja secara otomatis dengan tingkat akurasi yang tinggi. Arsitektur Xception digunakan dalam pekerjaan ini untuk menerapkan strategi pembelajaran mendalam. Teknik permutasi dan augmentasi digunakan untuk mengatasi ketidakseimbangan data. Model yang dikembangkan dapat membedakan empat jenis cacat pada permukaan baja. Koleksi 7.095 foto permukaan baja digunakan dalam prosedur pelatihan. Jika dibandingkan dengan tidak menggunakan transfer learning, hasil pengukuran kinerja proses pelatihan dengan menggunakan transfer learning (Imagenet) menunjukkan hasil yang lebih baik. Pelatihan pembelajaran transfer menghasilkan skor akurasi masing-masing sebesar 94,9% dan 97,7% untuk data pelatihan dan validasi. Sedangkan hasil penilaian nilai kerugian untuk data latih dan validasi masing-masing sebesar 19,4% dan 14,4%.\",\"PeriodicalId\":507205,\"journal\":{\"name\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"volume\":\"676 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/malcom.v4i1.1258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v4i1.1258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Menggunakan Xception, Transfer Learning, dan Permutasi untuk Meningkatkan Klasifikasi Ketidaksempurnaan Permukaan Baja
Kualitas permukaan baja yang diproduksi sangat penting untuk meningkatkan daya saing dalam industri baja. Tingginya tingkat cacat pada permukaan baja merupakan masalah serius yang berdampak pada kualitas keluaran. Pengendalian yang masih dilakukan secara manual dan visual saat ini hanya dapat dilakukan oleh orang-orang dengan bakat dan keahlian tertentu. Pengamatan dengan metode konvensional ini memerlukan waktu yang lama, lamban, dan presisi yang rendah. Saat ini, perkembangan teknik pembelajaran mendalam memungkinkan deteksi cacat permukaan baja secara otomatis dengan tingkat akurasi yang tinggi. Arsitektur Xception digunakan dalam pekerjaan ini untuk menerapkan strategi pembelajaran mendalam. Teknik permutasi dan augmentasi digunakan untuk mengatasi ketidakseimbangan data. Model yang dikembangkan dapat membedakan empat jenis cacat pada permukaan baja. Koleksi 7.095 foto permukaan baja digunakan dalam prosedur pelatihan. Jika dibandingkan dengan tidak menggunakan transfer learning, hasil pengukuran kinerja proses pelatihan dengan menggunakan transfer learning (Imagenet) menunjukkan hasil yang lebih baik. Pelatihan pembelajaran transfer menghasilkan skor akurasi masing-masing sebesar 94,9% dan 97,7% untuk data pelatihan dan validasi. Sedangkan hasil penilaian nilai kerugian untuk data latih dan validasi masing-masing sebesar 19,4% dan 14,4%.