S. Birnstengel, Peter Dietrich, Kilian Peisker, M. Pohle, G. Hornbruch, Sebastian Bauer, Linwei Hu, Thomas Günther, Olaf Hellwig, A. Dahmke, U. Werban
{"title":"跨孔地震实验装置,用于研究岩石物理模型在野外的应用","authors":"S. Birnstengel, Peter Dietrich, Kilian Peisker, M. Pohle, G. Hornbruch, Sebastian Bauer, Linwei Hu, Thomas Günther, Olaf Hellwig, A. Dahmke, U. Werban","doi":"10.1190/geo2022-0625.1","DOIUrl":null,"url":null,"abstract":"Seismic crosshole techniques are powerful tools to characterize the properties of near-surface aquifers. Knowledge of rock-physical relations at the field scale is essential for interpreting geophysical measurements. However, it remains difficult to extend the results of existing laboratory studies to the field scale due to the usage of different frequency ranges. To address this, we develop an experimental layout that successfully determines the dependency of gas saturation on seismic properties. Integrating geophysical measurements into a hydrogeological research question allows us to prove the applicability of theoretical rock physical concepts at the field scale, filling a gap in the discipline of hydrogeophysics. We use crosshole seismics to perform a time lapse study on a gas injection experiment at the “TestUM” test site. With a controlled two-day gaseous CH4 injection at 17.5 m depth, we monitor the alteration of water saturation in the sediments over a period of twelve months, encompassing an observational depth of 8–13 m. The investigation contains an initial P-wave simulation followed by a data-based P-wave velocity analysis. Subsequently, we discuss different approaches on quantifying gas content changes by comparing Gassmann’s equation and the time-average relation. With the idea of “patchy saturation”, we discover that analyzing P-wave velocities in the subsurface is a suitable method for our experiment, resulting in a measurement accuracy of 0.2 vol.%. We demonstrate that our seismic crosshole setup is able to describe the relation of the rock’s elastic parameter on modified fluid properties at the field scale. With this method, we are able to quantify relative water content changes in the subsurface.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental seismic crosshole setup to investigate the application of rock physical models at the field scale\",\"authors\":\"S. Birnstengel, Peter Dietrich, Kilian Peisker, M. Pohle, G. Hornbruch, Sebastian Bauer, Linwei Hu, Thomas Günther, Olaf Hellwig, A. Dahmke, U. Werban\",\"doi\":\"10.1190/geo2022-0625.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic crosshole techniques are powerful tools to characterize the properties of near-surface aquifers. Knowledge of rock-physical relations at the field scale is essential for interpreting geophysical measurements. However, it remains difficult to extend the results of existing laboratory studies to the field scale due to the usage of different frequency ranges. To address this, we develop an experimental layout that successfully determines the dependency of gas saturation on seismic properties. Integrating geophysical measurements into a hydrogeological research question allows us to prove the applicability of theoretical rock physical concepts at the field scale, filling a gap in the discipline of hydrogeophysics. We use crosshole seismics to perform a time lapse study on a gas injection experiment at the “TestUM” test site. With a controlled two-day gaseous CH4 injection at 17.5 m depth, we monitor the alteration of water saturation in the sediments over a period of twelve months, encompassing an observational depth of 8–13 m. The investigation contains an initial P-wave simulation followed by a data-based P-wave velocity analysis. Subsequently, we discuss different approaches on quantifying gas content changes by comparing Gassmann’s equation and the time-average relation. With the idea of “patchy saturation”, we discover that analyzing P-wave velocities in the subsurface is a suitable method for our experiment, resulting in a measurement accuracy of 0.2 vol.%. We demonstrate that our seismic crosshole setup is able to describe the relation of the rock’s elastic parameter on modified fluid properties at the field scale. With this method, we are able to quantify relative water content changes in the subsurface.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2022-0625.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0625.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Experimental seismic crosshole setup to investigate the application of rock physical models at the field scale
Seismic crosshole techniques are powerful tools to characterize the properties of near-surface aquifers. Knowledge of rock-physical relations at the field scale is essential for interpreting geophysical measurements. However, it remains difficult to extend the results of existing laboratory studies to the field scale due to the usage of different frequency ranges. To address this, we develop an experimental layout that successfully determines the dependency of gas saturation on seismic properties. Integrating geophysical measurements into a hydrogeological research question allows us to prove the applicability of theoretical rock physical concepts at the field scale, filling a gap in the discipline of hydrogeophysics. We use crosshole seismics to perform a time lapse study on a gas injection experiment at the “TestUM” test site. With a controlled two-day gaseous CH4 injection at 17.5 m depth, we monitor the alteration of water saturation in the sediments over a period of twelve months, encompassing an observational depth of 8–13 m. The investigation contains an initial P-wave simulation followed by a data-based P-wave velocity analysis. Subsequently, we discuss different approaches on quantifying gas content changes by comparing Gassmann’s equation and the time-average relation. With the idea of “patchy saturation”, we discover that analyzing P-wave velocities in the subsurface is a suitable method for our experiment, resulting in a measurement accuracy of 0.2 vol.%. We demonstrate that our seismic crosshole setup is able to describe the relation of the rock’s elastic parameter on modified fluid properties at the field scale. With this method, we are able to quantify relative water content changes in the subsurface.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.