研究不同大小的消能块对水闸性能的影响

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES Water SA Pub Date : 2024-01-30 DOI:10.17159/wsa/2024.v50.i1.4064
Enes Gül, Zeyneb Kılıç, Erdinç İkincioğulları, M Cihan Aydın
{"title":"研究不同大小的消能块对水闸性能的影响","authors":"Enes Gül, Zeyneb Kılıç, Erdinç İkincioğulları, M Cihan Aydın","doi":"10.17159/wsa/2024.v50.i1.4064","DOIUrl":null,"url":null,"abstract":"The present research used a combination of experimental and numerical methods to investigate energy dissipation blocks of different heights placed downstream of a sluice gate in an open channel flow. Numerical model simulations were performed using a 3D computational fluid dynamics (CFD) technique, using the Reynolds-averaged Navier-Stokes (RANS) equations with the volume of fluid (VOF) and k-ε turbulence models. The accuracy of the numerical model and the grid sensitivity was assessed according to a recommended procedure in the literature. Different hydraulic and geometry conditions were investigated to understand the energy dissipation behaviour of the blocks. The hydrodynamic effects of different block spacings, heights and configurations were analysed by means of CFD simulations. The results show that the variable size blocks have a high energy dissipation efficiency in sluice gate flows, particularly at high Froude numbers. The energy dissipation efficiency of the blocks downstream of a sluice gate can reach up to 55% for high discharges (Q = 35 L/s). Interestingly, the energy dissipation performance of small gate openings exceeds that of large gate openings, reaching a peak efficiency of 40% for the same discharge. In addition, the block spacing has a minimal effect on the energy dissipation, while smaller block spacing results in a smoother water surface profile.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance\",\"authors\":\"Enes Gül, Zeyneb Kılıç, Erdinç İkincioğulları, M Cihan Aydın\",\"doi\":\"10.17159/wsa/2024.v50.i1.4064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research used a combination of experimental and numerical methods to investigate energy dissipation blocks of different heights placed downstream of a sluice gate in an open channel flow. Numerical model simulations were performed using a 3D computational fluid dynamics (CFD) technique, using the Reynolds-averaged Navier-Stokes (RANS) equations with the volume of fluid (VOF) and k-ε turbulence models. The accuracy of the numerical model and the grid sensitivity was assessed according to a recommended procedure in the literature. Different hydraulic and geometry conditions were investigated to understand the energy dissipation behaviour of the blocks. The hydrodynamic effects of different block spacings, heights and configurations were analysed by means of CFD simulations. The results show that the variable size blocks have a high energy dissipation efficiency in sluice gate flows, particularly at high Froude numbers. The energy dissipation efficiency of the blocks downstream of a sluice gate can reach up to 55% for high discharges (Q = 35 L/s). Interestingly, the energy dissipation performance of small gate openings exceeds that of large gate openings, reaching a peak efficiency of 40% for the same discharge. In addition, the block spacing has a minimal effect on the energy dissipation, while smaller block spacing results in a smoother water surface profile.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2024.v50.i1.4064\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2024.v50.i1.4064","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用实验和数值方法相结合的方式,对明渠水流中放置在水闸下游的不同高度的消能块进行了研究。数值模型模拟采用三维计算流体动力学(CFD)技术,使用雷诺平均纳维-斯托克斯(RANS)方程和流体体积(VOF)及 k-ε 湍流模型。根据文献中推荐的程序,对数值模型的精度和网格敏感性进行了评估。研究了不同的水力和几何条件,以了解块体的能量耗散行为。通过 CFD 模拟分析了不同砌块间距、高度和结构的流体力学效应。结果表明,在水闸水流中,特别是在高弗劳德数情况下,可变尺寸砌块具有很高的能量耗散效率。在高排水量(Q = 35 L/s)的情况下,水闸下游砌块的消能效率最高可达 55%。有趣的是,小闸门开口的消能性能超过了大闸门开口的消能性能,在相同排量的情况下,峰值效率达到 40%。此外,栅块间距对能量耗散的影响微乎其微,而较小的栅块间距会使水面轮廓更加平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance
The present research used a combination of experimental and numerical methods to investigate energy dissipation blocks of different heights placed downstream of a sluice gate in an open channel flow. Numerical model simulations were performed using a 3D computational fluid dynamics (CFD) technique, using the Reynolds-averaged Navier-Stokes (RANS) equations with the volume of fluid (VOF) and k-ε turbulence models. The accuracy of the numerical model and the grid sensitivity was assessed according to a recommended procedure in the literature. Different hydraulic and geometry conditions were investigated to understand the energy dissipation behaviour of the blocks. The hydrodynamic effects of different block spacings, heights and configurations were analysed by means of CFD simulations. The results show that the variable size blocks have a high energy dissipation efficiency in sluice gate flows, particularly at high Froude numbers. The energy dissipation efficiency of the blocks downstream of a sluice gate can reach up to 55% for high discharges (Q = 35 L/s). Interestingly, the energy dissipation performance of small gate openings exceeds that of large gate openings, reaching a peak efficiency of 40% for the same discharge. In addition, the block spacing has a minimal effect on the energy dissipation, while smaller block spacing results in a smoother water surface profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
期刊最新文献
Assessment of the spatiotemporal dynamics of the hydrological state of non-perennial river systems and identification of flow-contributing areas Water use and potential hydrological implications of fast-growing Eucalyptus grandis x Eucalyptus urophylla hybrid in northern Zululand, South Africa Coagulation efficiency and removal mechanism for composite coagulant polyaluminium chloride/polydimethyldiallylammonium chloride in treating lightly micro-polluted raw water of Yangtze River in autumn Groundwater contaminant fluctuation at a landfill: a case study of the Coastal Park Landfill, Cape Town On the Flow Characteristics (FC) method for estimating sustainable borehole yield
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1