Rabeya Sultana Mim, Md Ibrahim Hossain Mollah, Rakhi Kundu, N. T. Tonu, Md Mahfujul Hasan, Md Saddam Hossain, Mohammad Abu Yousuf, P. Ahamed
{"title":"基于氧化锰的核@壳纳米粒子及其在水性锌-离子电池中的应用","authors":"Rabeya Sultana Mim, Md Ibrahim Hossain Mollah, Rakhi Kundu, N. T. Tonu, Md Mahfujul Hasan, Md Saddam Hossain, Mohammad Abu Yousuf, P. Ahamed","doi":"10.3329/jes.v14i2.71229","DOIUrl":null,"url":null,"abstract":"In this study, MnO2 as well as core@shell type MnO2@Ag material were prepared through the versatile reverse micelle route. FTIR absorption band at 522 cm-1 was ascribed to the Mn-O stretching mode, demonstrating the presence of a Mn-O bond inside the MnO2 structure. XRD was used to determine the crystalline structure of the prepared samples. Peaks at 2θ = 12.7°, 18.1°, 28.8°, 37.5°, 42.1°, 49.9°, 56.2°, and 60.3° matched the α-MnO2 diffraction peaks nicely. The spherical shape of the produced MnO2 and MnO2@Ag compounds was observed in FESEM. The results of the histogram show that MnO2@Ag particles are marginally smaller than MnO2 particles. The electrochemical assessment of the generated cathode materials for aqueous zinc-ion battery (AZIB) CR-2032 was conducted using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and battery charge-discharge (BCD) techniques.\nJournal of Engineering Science 14(2), 2023, 69-77","PeriodicalId":52570,"journal":{"name":"Journal of Engineering Science","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese Oxide Based Core@Shell Nanoparticles and Its Application in Aqueous Zinc-Ion Battery\",\"authors\":\"Rabeya Sultana Mim, Md Ibrahim Hossain Mollah, Rakhi Kundu, N. T. Tonu, Md Mahfujul Hasan, Md Saddam Hossain, Mohammad Abu Yousuf, P. Ahamed\",\"doi\":\"10.3329/jes.v14i2.71229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, MnO2 as well as core@shell type MnO2@Ag material were prepared through the versatile reverse micelle route. FTIR absorption band at 522 cm-1 was ascribed to the Mn-O stretching mode, demonstrating the presence of a Mn-O bond inside the MnO2 structure. XRD was used to determine the crystalline structure of the prepared samples. Peaks at 2θ = 12.7°, 18.1°, 28.8°, 37.5°, 42.1°, 49.9°, 56.2°, and 60.3° matched the α-MnO2 diffraction peaks nicely. The spherical shape of the produced MnO2 and MnO2@Ag compounds was observed in FESEM. The results of the histogram show that MnO2@Ag particles are marginally smaller than MnO2 particles. The electrochemical assessment of the generated cathode materials for aqueous zinc-ion battery (AZIB) CR-2032 was conducted using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and battery charge-discharge (BCD) techniques.\\nJournal of Engineering Science 14(2), 2023, 69-77\",\"PeriodicalId\":52570,\"journal\":{\"name\":\"Journal of Engineering Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jes.v14i2.71229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jes.v14i2.71229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Manganese Oxide Based Core@Shell Nanoparticles and Its Application in Aqueous Zinc-Ion Battery
In this study, MnO2 as well as core@shell type MnO2@Ag material were prepared through the versatile reverse micelle route. FTIR absorption band at 522 cm-1 was ascribed to the Mn-O stretching mode, demonstrating the presence of a Mn-O bond inside the MnO2 structure. XRD was used to determine the crystalline structure of the prepared samples. Peaks at 2θ = 12.7°, 18.1°, 28.8°, 37.5°, 42.1°, 49.9°, 56.2°, and 60.3° matched the α-MnO2 diffraction peaks nicely. The spherical shape of the produced MnO2 and MnO2@Ag compounds was observed in FESEM. The results of the histogram show that MnO2@Ag particles are marginally smaller than MnO2 particles. The electrochemical assessment of the generated cathode materials for aqueous zinc-ion battery (AZIB) CR-2032 was conducted using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and battery charge-discharge (BCD) techniques.
Journal of Engineering Science 14(2), 2023, 69-77