互联和自动驾驶汽车的架构和潜力

Vehicles Pub Date : 2024-01-29 DOI:10.3390/vehicles6010012
Michele Pipicelli, A. Gimelli, Bernardo Sessa, Francesco de Nola, Gianluca Toscano, G. Di Blasio
{"title":"互联和自动驾驶汽车的架构和潜力","authors":"Michele Pipicelli, A. Gimelli, Bernardo Sessa, Francesco de Nola, Gianluca Toscano, G. Di Blasio","doi":"10.3390/vehicles6010012","DOIUrl":null,"url":null,"abstract":"The transport sector is under an intensive renovation process. Innovative concepts such as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles (CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of future mobility systems, as demonstrated by worldwide efforts in research and industry communities. The main driver of CAVs development is road safety, but other benefits, such as comfort and energy saving, are not to be neglected. CAVs analysis and development usually focus on Information and Communication Technology (ICT) research themes and less on the entire vehicle system. Many studies on specific aspects of CAVs are available in the literature, including advanced powertrain control strategies and their effects on vehicle efficiency. However, most studies neglect the additional power consumption due to the autonomous driving system. This work aims to assess uncertain CAVs’ efficiency improvements and offers an overview of their architecture. In particular, a combination of the literature survey and proper statistical methods are proposed to provide a comprehensive overview of CAVs. The CAV layout, data processing, and management to be used in energy management strategies are discussed. The data gathered are used to define statistical distribution relative to the efficiency improvement, number of sensors, computing units and their power requirements. Those distributions have been employed within a Monte Carlo method simulation to evaluate the effect on vehicle energy consumption and energy saving, using optimal driving behaviour, and considering the power consumption from additional CAV hardware. The results show that the assumption that CAV technologies will reduce energy consumption compared to the reference vehicle, should not be taken for granted. In 75% of scenarios, simulated light-duty CAVs worsen energy efficiency, while the results are more promising for heavy-duty vehicles.","PeriodicalId":509694,"journal":{"name":"Vehicles","volume":"185 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Architecture and Potential of Connected and Autonomous Vehicles\",\"authors\":\"Michele Pipicelli, A. Gimelli, Bernardo Sessa, Francesco de Nola, Gianluca Toscano, G. Di Blasio\",\"doi\":\"10.3390/vehicles6010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport sector is under an intensive renovation process. Innovative concepts such as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles (CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of future mobility systems, as demonstrated by worldwide efforts in research and industry communities. The main driver of CAVs development is road safety, but other benefits, such as comfort and energy saving, are not to be neglected. CAVs analysis and development usually focus on Information and Communication Technology (ICT) research themes and less on the entire vehicle system. Many studies on specific aspects of CAVs are available in the literature, including advanced powertrain control strategies and their effects on vehicle efficiency. However, most studies neglect the additional power consumption due to the autonomous driving system. This work aims to assess uncertain CAVs’ efficiency improvements and offers an overview of their architecture. In particular, a combination of the literature survey and proper statistical methods are proposed to provide a comprehensive overview of CAVs. The CAV layout, data processing, and management to be used in energy management strategies are discussed. The data gathered are used to define statistical distribution relative to the efficiency improvement, number of sensors, computing units and their power requirements. Those distributions have been employed within a Monte Carlo method simulation to evaluate the effect on vehicle energy consumption and energy saving, using optimal driving behaviour, and considering the power consumption from additional CAV hardware. The results show that the assumption that CAV technologies will reduce energy consumption compared to the reference vehicle, should not be taken for granted. In 75% of scenarios, simulated light-duty CAVs worsen energy efficiency, while the results are more promising for heavy-duty vehicles.\",\"PeriodicalId\":509694,\"journal\":{\"name\":\"Vehicles\",\"volume\":\"185 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles6010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles6010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交通运输业正在经历一场激烈的变革。共享和多式联运、移动即服务以及联网和自动驾驶汽车(CAVs)等创新概念将有助于向碳中和过渡,并被视为未来移动系统的重要组成部分,这一点已在全球研究和工业界的努力中得到证明。道路安全是 CAVs 发展的主要驱动力,但舒适性和节能等其他优势也不容忽视。CAVs 的分析和开发通常侧重于信息和通信技术 (ICT) 研究主题,而较少关注整个车辆系统。文献中有许多关于 CAV 具体方面的研究,包括先进的动力总成控制策略及其对车辆效率的影响。然而,大多数研究都忽略了自动驾驶系统带来的额外功耗。这项工作旨在评估不确定的 CAV 的效率改进,并概述其架构。特别是结合文献调查和适当的统计方法,提出了对 CAV 的全面概述。讨论了用于能源管理策略的 CAV 布局、数据处理和管理。收集到的数据用于定义与效率提高、传感器数量、计算单元及其功率要求相关的统计分布。在蒙特卡洛模拟法中使用了这些分布,以评估车辆能耗和节能效果,采用最佳驾驶行为,并考虑额外 CAV 硬件的功耗。结果表明,与参考车辆相比,不应想当然地认为 CAV 技术会降低能耗。在 75% 的情况下,模拟的轻型 CAV 会降低能效,而重型车辆的结果则更为乐观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture and Potential of Connected and Autonomous Vehicles
The transport sector is under an intensive renovation process. Innovative concepts such as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles (CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of future mobility systems, as demonstrated by worldwide efforts in research and industry communities. The main driver of CAVs development is road safety, but other benefits, such as comfort and energy saving, are not to be neglected. CAVs analysis and development usually focus on Information and Communication Technology (ICT) research themes and less on the entire vehicle system. Many studies on specific aspects of CAVs are available in the literature, including advanced powertrain control strategies and their effects on vehicle efficiency. However, most studies neglect the additional power consumption due to the autonomous driving system. This work aims to assess uncertain CAVs’ efficiency improvements and offers an overview of their architecture. In particular, a combination of the literature survey and proper statistical methods are proposed to provide a comprehensive overview of CAVs. The CAV layout, data processing, and management to be used in energy management strategies are discussed. The data gathered are used to define statistical distribution relative to the efficiency improvement, number of sensors, computing units and their power requirements. Those distributions have been employed within a Monte Carlo method simulation to evaluate the effect on vehicle energy consumption and energy saving, using optimal driving behaviour, and considering the power consumption from additional CAV hardware. The results show that the assumption that CAV technologies will reduce energy consumption compared to the reference vehicle, should not be taken for granted. In 75% of scenarios, simulated light-duty CAVs worsen energy efficiency, while the results are more promising for heavy-duty vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Performance Improvement of Active Suspension System Collaborating with an Active Airfoil Based on a Quarter-Car Model Impacts of a Toll Information Sign and Toll Lane Configuration on Queue Length and Collision Risk at a Toll Plaza with a High Percentage of Heavy Vehicles Virtual Plug-In Hybrid Concept Development and Optimization under Real-World Boundary Conditions Thermal Management of Lithium-Ion Battery Pack Using Equivalent Circuit Model Radar-Based Pedestrian and Vehicle Detection and Identification for Driving Assistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1