基于形态学和分子标记的飞燕草物种(Conyza spp.)分类解析及其在巴西大豆种植大区和季节中的分布情况

IF 2.1 2区 农林科学 Q2 AGRONOMY Weed Science Pub Date : 2024-01-29 DOI:10.1017/wsc.2024.3
Augusto Kalsing, Felipe A. Nunes, Guilherme A. Gotardi, Jaqueline C. Bueno, Angelo A. Schneider, L. Tropaldi, E. D. Velini, A. Merotto, C. A. Carbonari
{"title":"基于形态学和分子标记的飞燕草物种(Conyza spp.)分类解析及其在巴西大豆种植大区和季节中的分布情况","authors":"Augusto Kalsing, Felipe A. Nunes, Guilherme A. Gotardi, Jaqueline C. Bueno, Angelo A. Schneider, L. Tropaldi, E. D. Velini, A. Merotto, C. A. Carbonari","doi":"10.1017/wsc.2024.3","DOIUrl":null,"url":null,"abstract":"\n The Conyza genus includes nearly 150 species, comprising closely related weedy species. Proper identification of Conyza spp. is essential to develop effective strategies for their management. The overlap of traits, species varieties, and the putative occurrence of hybridization hampers the identification of Conyza spp. and its management in agricultural and natural environments. Herein, we assessed five DNA barcodes and 32 morphological traits to classify Conyza spp. and survey their dispersion in soybean fields [Glycine max (L.) Merr.] in Brazil in 2019, 2020, and 2021. The Conyza accessions included two species, hairy fleabane [Conyza bonariensis (L.) Cronquist) and Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker], and each species comprised two varieties. The ITS and rps16-trnQ gene regions showed the ability to distinguish between the two Conyza species, while the matK, rbcL, and trnF-trnF gene regions were not polymorphic. Out of 32 morphological traits, phyllary color, involucre shape, capitulescence type, and inflorescence type were the most polymorphic and even reliable for taxonomic purposes. The combination of ITS or ITS+rps16-trnQ regions and the four morphological markers was able to discriminate 91% of the plants, except those of C. bonariensis var. angustifolia. These results support the taxonomic resolution between C. bonariensis and C. sumatrensis and are useful for other Conyza spp. and other closely related weedy species worldwide. Conyza sumatrensis was detected in 94% of soybean fields across macroregions and seasons in Brazil, while C. bonariensis was sparsely dispersed, mainly in the southern macroregion (MRS 1).","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomic resolution of fleabane species (Conyza spp.) based on morphological and molecular markers and their dispersion across soybean-cropping macroregions and seasons in Brazil\",\"authors\":\"Augusto Kalsing, Felipe A. Nunes, Guilherme A. Gotardi, Jaqueline C. Bueno, Angelo A. Schneider, L. Tropaldi, E. D. Velini, A. Merotto, C. A. Carbonari\",\"doi\":\"10.1017/wsc.2024.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Conyza genus includes nearly 150 species, comprising closely related weedy species. Proper identification of Conyza spp. is essential to develop effective strategies for their management. The overlap of traits, species varieties, and the putative occurrence of hybridization hampers the identification of Conyza spp. and its management in agricultural and natural environments. Herein, we assessed five DNA barcodes and 32 morphological traits to classify Conyza spp. and survey their dispersion in soybean fields [Glycine max (L.) Merr.] in Brazil in 2019, 2020, and 2021. The Conyza accessions included two species, hairy fleabane [Conyza bonariensis (L.) Cronquist) and Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker], and each species comprised two varieties. The ITS and rps16-trnQ gene regions showed the ability to distinguish between the two Conyza species, while the matK, rbcL, and trnF-trnF gene regions were not polymorphic. Out of 32 morphological traits, phyllary color, involucre shape, capitulescence type, and inflorescence type were the most polymorphic and even reliable for taxonomic purposes. The combination of ITS or ITS+rps16-trnQ regions and the four morphological markers was able to discriminate 91% of the plants, except those of C. bonariensis var. angustifolia. These results support the taxonomic resolution between C. bonariensis and C. sumatrensis and are useful for other Conyza spp. and other closely related weedy species worldwide. Conyza sumatrensis was detected in 94% of soybean fields across macroregions and seasons in Brazil, while C. bonariensis was sparsely dispersed, mainly in the southern macroregion (MRS 1).\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2024.3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2024.3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

黑麦草属包括近 150 个物种,其中包括关系密切的杂草物种。要制定有效的管理策略,就必须正确识别 Conyza 属植物。性状的重叠、物种的变异以及可能发生的杂交阻碍了对 Conyza 属植物的鉴定及其在农业和自然环境中的管理。在此,我们评估了 5 种 DNA 条形码和 32 种形态特征,以对 Conyza 属植物进行分类,并调查它们在 2019 年、2020 年和 2021 年巴西大豆田 [Glycine max (L.) Merr.] 中的分布情况。Conyza 入选品系包括两个物种,即多毛飞蓬[Conyza bonariensis (L.) Cronquist]和苏门答腊飞蓬[Conyza sumatrensis (Retz.) E. Walker],每个物种包括两个变种。ITS 和 rps16-trnQ 基因区显示出区分这两个 Conyza 品种的能力,而 matK、rbcL 和 trnF-trnF 基因区则没有多态性。在 32 个形态特征中,叶色、总苞形状、头状花序类型和花序类型的多态性最高,甚至在分类学上也是可靠的。ITS 或 ITS+rps16-trnQ 区域与四个形态标记的组合能够区分 91% 的植株,但 C. bonariensis var.这些结果支持了 C. bonariensis 和 C. sumatrensis 之间的分类学解析,并对世界范围内的其他 Conyza 属植物和其他密切相关的杂草物种很有帮助。Conyza sumatrensis 在巴西不同大区和不同季节的 94% 的大豆田中被检测到,而 C. bonariensis 则分布稀少,主要集中在南部大区(MRS 1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taxonomic resolution of fleabane species (Conyza spp.) based on morphological and molecular markers and their dispersion across soybean-cropping macroregions and seasons in Brazil
The Conyza genus includes nearly 150 species, comprising closely related weedy species. Proper identification of Conyza spp. is essential to develop effective strategies for their management. The overlap of traits, species varieties, and the putative occurrence of hybridization hampers the identification of Conyza spp. and its management in agricultural and natural environments. Herein, we assessed five DNA barcodes and 32 morphological traits to classify Conyza spp. and survey their dispersion in soybean fields [Glycine max (L.) Merr.] in Brazil in 2019, 2020, and 2021. The Conyza accessions included two species, hairy fleabane [Conyza bonariensis (L.) Cronquist) and Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker], and each species comprised two varieties. The ITS and rps16-trnQ gene regions showed the ability to distinguish between the two Conyza species, while the matK, rbcL, and trnF-trnF gene regions were not polymorphic. Out of 32 morphological traits, phyllary color, involucre shape, capitulescence type, and inflorescence type were the most polymorphic and even reliable for taxonomic purposes. The combination of ITS or ITS+rps16-trnQ regions and the four morphological markers was able to discriminate 91% of the plants, except those of C. bonariensis var. angustifolia. These results support the taxonomic resolution between C. bonariensis and C. sumatrensis and are useful for other Conyza spp. and other closely related weedy species worldwide. Conyza sumatrensis was detected in 94% of soybean fields across macroregions and seasons in Brazil, while C. bonariensis was sparsely dispersed, mainly in the southern macroregion (MRS 1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weed Science
Weed Science 农林科学-农艺学
CiteScore
4.60
自引率
12.00%
发文量
64
审稿时长
12-24 weeks
期刊介绍: Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include: - the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds - herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation - ecology of cropping and other agricultural systems as they relate to weed management - biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops - effect of weed management on soil, air and water.
期刊最新文献
Impact of burial depth and root segment length on vegetative propagation of common milkweed (Asclepias syriaca) How are weeds named: A committee review of the WSSA composite list of names Effects of Bed Width and Crop Row Spacing on Barnyardgrass (Echinochloa crus-galli) Emergence and Seed Production in Furrow-Irrigated Rice Investigating sexual and asexual modes of reproduction in Palmer Amaranth (Amaranthus palmeri) Known and potential benefits of applying herbicides with glutathione S-transferase inhibitors and inducers – a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1