P. Ganesan, G. Palani, John R. Graef, E. Thandapani
{"title":"通过典型变换实现四阶非线性半典型中性差分方程的振荡","authors":"P. Ganesan, G. Palani, John R. Graef, E. Thandapani","doi":"10.1155/2024/6682607","DOIUrl":null,"url":null,"abstract":"The authors present a new technique for transforming fourth-order semi-canonical nonlinear neutral difference equations into canonical form. This greatly simplifies the examination of the oscillation of solutions. Some new oscillation criteria are established by comparison with first-order delay difference equations. Examples are provided to illustrate the significance and novelty of the main results. The results are new even for the case of nonneutral difference equations.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"167 1-2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation of Fourth-Order Nonlinear Semi-Canonical Neutral Difference Equations via Canonical Transformations\",\"authors\":\"P. Ganesan, G. Palani, John R. Graef, E. Thandapani\",\"doi\":\"10.1155/2024/6682607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a new technique for transforming fourth-order semi-canonical nonlinear neutral difference equations into canonical form. This greatly simplifies the examination of the oscillation of solutions. Some new oscillation criteria are established by comparison with first-order delay difference equations. Examples are provided to illustrate the significance and novelty of the main results. The results are new even for the case of nonneutral difference equations.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\"167 1-2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6682607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6682607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Oscillation of Fourth-Order Nonlinear Semi-Canonical Neutral Difference Equations via Canonical Transformations
The authors present a new technique for transforming fourth-order semi-canonical nonlinear neutral difference equations into canonical form. This greatly simplifies the examination of the oscillation of solutions. Some new oscillation criteria are established by comparison with first-order delay difference equations. Examples are provided to illustrate the significance and novelty of the main results. The results are new even for the case of nonneutral difference equations.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.