Jia-Wei Wang, Patrick M. Koch, S. Clarke, G. Fuller, N. Peretto, Ya-wen Tang, Hsi-Wei Yen, S. Lai, N. Ohashi, D. Arzoumanian, Doug Johnstone, R. Furuya, S. Inutsuka, Chang Won Lee, D. Ward-Thompson, Valentin J. M. Le Gouellec, Hongli Liu, L. Fanciullo, J. Hwang, K. Pattle, F. Poidevin, M. Tahani, T. Onaka, M. Rawlings, E. Chung, Junhao Liu, A. Lyo, F. Priestley, T. Hoang, Motohide Tamura, D. Berry, P. Bastien, T. Ching, Simon Coud'e, W. Kwon, Mike Chen, C. Eswaraiah, A. Soam, Tetsuo Hasegawa, K. Qiu, T. Bourke, D. Byun, Zhiwei Chen, H. Chen, W. Chen, Jung‐Hwa Cho, Minho Choi, Yunhee Choi, Youngwoo Choi, A. Chrysostomou, S. Dai, J. di Francesco, Pham Ngoc Diep, Y. Doi, Y. Duan, H. Duan, D. Eden, J. Fiege, L. Fissel, E. Franzmann, P. Friberg, R. Friesen, Tim Gledhill, S. Graves, Jane Greaves, M. Griffin, Q. Gu, I. Han, S. Hayashi, M. Houde, Tsuyoshi Inoue, K. Iwasaki, Il-Gyo Jeong, V. Könyves, Ji-hyun Kang, Miju Kang, J. Karoly, A. Kataoka, K. Kawabata, Zacariyya Khan, Mi-Ryang Kim, Kee-Tae Kim, K. Kim, Sh
{"title":"利用 BISTRO 发现的高质量恒星形成区 NGC 2264 中的丝状网络和磁场结构:全局特性和局部磁引力配置","authors":"Jia-Wei Wang, Patrick M. Koch, S. Clarke, G. Fuller, N. Peretto, Ya-wen Tang, Hsi-Wei Yen, S. Lai, N. Ohashi, D. Arzoumanian, Doug Johnstone, R. Furuya, S. Inutsuka, Chang Won Lee, D. Ward-Thompson, Valentin J. M. Le Gouellec, Hongli Liu, L. Fanciullo, J. Hwang, K. Pattle, F. Poidevin, M. Tahani, T. Onaka, M. Rawlings, E. Chung, Junhao Liu, A. Lyo, F. Priestley, T. Hoang, Motohide Tamura, D. Berry, P. Bastien, T. Ching, Simon Coud'e, W. Kwon, Mike Chen, C. Eswaraiah, A. Soam, Tetsuo Hasegawa, K. Qiu, T. Bourke, D. Byun, Zhiwei Chen, H. Chen, W. Chen, Jung‐Hwa Cho, Minho Choi, Yunhee Choi, Youngwoo Choi, A. Chrysostomou, S. Dai, J. di Francesco, Pham Ngoc Diep, Y. Doi, Y. Duan, H. Duan, D. Eden, J. Fiege, L. Fissel, E. Franzmann, P. Friberg, R. Friesen, Tim Gledhill, S. Graves, Jane Greaves, M. Griffin, Q. Gu, I. Han, S. Hayashi, M. Houde, Tsuyoshi Inoue, K. Iwasaki, Il-Gyo Jeong, V. Könyves, Ji-hyun Kang, Miju Kang, J. Karoly, A. Kataoka, K. Kawabata, Zacariyya Khan, Mi-Ryang Kim, Kee-Tae Kim, K. Kim, Sh","doi":"10.3847/1538-4357/ad165b","DOIUrl":null,"url":null,"abstract":"\n We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity.","PeriodicalId":504209,"journal":{"name":"The Astrophysical Journal","volume":"28 2-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations\",\"authors\":\"Jia-Wei Wang, Patrick M. Koch, S. Clarke, G. Fuller, N. Peretto, Ya-wen Tang, Hsi-Wei Yen, S. Lai, N. Ohashi, D. Arzoumanian, Doug Johnstone, R. Furuya, S. Inutsuka, Chang Won Lee, D. Ward-Thompson, Valentin J. M. Le Gouellec, Hongli Liu, L. Fanciullo, J. Hwang, K. Pattle, F. Poidevin, M. Tahani, T. Onaka, M. Rawlings, E. Chung, Junhao Liu, A. Lyo, F. Priestley, T. Hoang, Motohide Tamura, D. Berry, P. Bastien, T. Ching, Simon Coud'e, W. Kwon, Mike Chen, C. Eswaraiah, A. Soam, Tetsuo Hasegawa, K. Qiu, T. Bourke, D. Byun, Zhiwei Chen, H. Chen, W. Chen, Jung‐Hwa Cho, Minho Choi, Yunhee Choi, Youngwoo Choi, A. Chrysostomou, S. Dai, J. di Francesco, Pham Ngoc Diep, Y. Doi, Y. Duan, H. Duan, D. Eden, J. Fiege, L. Fissel, E. Franzmann, P. Friberg, R. Friesen, Tim Gledhill, S. Graves, Jane Greaves, M. Griffin, Q. Gu, I. Han, S. Hayashi, M. Houde, Tsuyoshi Inoue, K. Iwasaki, Il-Gyo Jeong, V. Könyves, Ji-hyun Kang, Miju Kang, J. Karoly, A. Kataoka, K. Kawabata, Zacariyya Khan, Mi-Ryang Kim, Kee-Tae Kim, K. Kim, Sh\",\"doi\":\"10.3847/1538-4357/ad165b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity.\",\"PeriodicalId\":504209,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"28 2-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad165b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad165b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们报告了对丝状高质恒星形成区 NGC 2264 的 850 μm 连续极化观测数据,这些数据是詹姆斯-克拉克-麦克斯韦望远镜的 "恒星形成区 B 场观测"(B-fields In STar forming Regions Observations)大型计划的一部分。这些数据揭示了 NGC 2264C 和 2264D 区域内结构良好的非均匀磁场,其主要方向为北向东 30° 左右。对主要星团的磁场强度估算和病毒分析表明,NGC 2264C 在全球范围内受重力支配,而在 2264D 中,磁能、重力能和动能大致平衡。我们提出了一种分析方案,利用局部解析的磁场结构、局部测量的引力矢量场和提取的丝状网络。由此,我们推断出统计趋势,表明该网络由两大组方向大致相互垂直的细丝组成。此外,重力还显示出一个主要的汇聚方向,与其中一个丝状方向大致垂直,这表明质量沿该方向聚集。除了这些统计趋势之外,我们还发现了两种类型的细丝。I 型灯丝垂直于磁场,从灯丝脊外侧开始,局部重力从平行于磁场过渡到垂直于磁场。II 型灯丝与磁场和当地引力平行。我们将这两种类型的细丝解释为源于细丝自身引力驱动的径向塌缩和区域整体引力驱动的纵向塌缩之间的竞争。
Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations
We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity.