枯竭油气藏二氧化碳封存容量估算比较研究:墨西哥湾朱雀盆地案例研究

Ighomuaye E
{"title":"枯竭油气藏二氧化碳封存容量估算比较研究:墨西哥湾朱雀盆地案例研究","authors":"Ighomuaye E","doi":"10.23880/ppej-16000379","DOIUrl":null,"url":null,"abstract":"CO2 emissions rates have seen an exponential growth from the 19th century up till date, if no drastic measures and plans are implemented to prevent this exponential growth the consequence will be devastating. The notion of achieving net-zero greenhouse gas emissions gained prominence through the Paris Agreement, a groundbreaking accord reached at the United Nations Climate Change Conference. This agreement was devised to mitigate the impact of greenhouse gas emissions. To execute the net-zero CO2 emission plan, the USDOE has set a new goal to remove gigatons of carbon dioxide (CO2 ) from the atmosphere and durably store it for less than $100/ton of net CO2 -equivalent. Making such a goal a reality requires an accurate estimation of CO2 storage capacity for the successful implementation of Carbon Capture and Storage (CCS) technologies, and the assessment of the impact of CCS to the reduction of CO2 emissions. Hence this paper serves as a template for accurately estimating CO2 storage capacity in depleted saturated oil reservoirs with initial gas cap using three approaches: Volumetric, Production and Correlation-based methods and compares the accuracy of the estimates. A case study was conducted on a depleted VR273_Q combination sand in the Vermillion Basin, Gulf of Mexico (GOM). The deterministic and stochastic (P50) CO2 storage capacity estimates from the Volume-based method are 1.21 million tonnes (Mt) and 1.23 Mt respectively, while the deterministic CO2 storage capacity estimates from the Production and Correlationbased method are 1.32 Mt and 1.41 Mt respectively. All three approaches showed similar results, with little deviations attributed to petrophysical uncertainties arising from data gaps i.e., absence of well logs to key wells. However, these uncertainties are captured by Stochastic (P90) CO2 storage capacity estimates of 1.47 Mt from the Volume-based method. Although the Correlation-based approach slightly overestimates the CO2 storage capacity, it can be used as a starting point for quick estimation as it only requires production data which are readily available on various databases for GOM. Finally, through this paper, opportunities for concerned agencies to make well-informed energy-related policies and business decisions are made possible.","PeriodicalId":282073,"journal":{"name":"Petroleum & Petrochemical Engineering Journal","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of CO2 Storage Capacity Estimation in Depleted Oil & Gas Reservoir: A Case Study in Vermillion Basin Gulf of Mexico\",\"authors\":\"Ighomuaye E\",\"doi\":\"10.23880/ppej-16000379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2 emissions rates have seen an exponential growth from the 19th century up till date, if no drastic measures and plans are implemented to prevent this exponential growth the consequence will be devastating. The notion of achieving net-zero greenhouse gas emissions gained prominence through the Paris Agreement, a groundbreaking accord reached at the United Nations Climate Change Conference. This agreement was devised to mitigate the impact of greenhouse gas emissions. To execute the net-zero CO2 emission plan, the USDOE has set a new goal to remove gigatons of carbon dioxide (CO2 ) from the atmosphere and durably store it for less than $100/ton of net CO2 -equivalent. Making such a goal a reality requires an accurate estimation of CO2 storage capacity for the successful implementation of Carbon Capture and Storage (CCS) technologies, and the assessment of the impact of CCS to the reduction of CO2 emissions. Hence this paper serves as a template for accurately estimating CO2 storage capacity in depleted saturated oil reservoirs with initial gas cap using three approaches: Volumetric, Production and Correlation-based methods and compares the accuracy of the estimates. A case study was conducted on a depleted VR273_Q combination sand in the Vermillion Basin, Gulf of Mexico (GOM). The deterministic and stochastic (P50) CO2 storage capacity estimates from the Volume-based method are 1.21 million tonnes (Mt) and 1.23 Mt respectively, while the deterministic CO2 storage capacity estimates from the Production and Correlationbased method are 1.32 Mt and 1.41 Mt respectively. All three approaches showed similar results, with little deviations attributed to petrophysical uncertainties arising from data gaps i.e., absence of well logs to key wells. However, these uncertainties are captured by Stochastic (P90) CO2 storage capacity estimates of 1.47 Mt from the Volume-based method. Although the Correlation-based approach slightly overestimates the CO2 storage capacity, it can be used as a starting point for quick estimation as it only requires production data which are readily available on various databases for GOM. Finally, through this paper, opportunities for concerned agencies to make well-informed energy-related policies and business decisions are made possible.\",\"PeriodicalId\":282073,\"journal\":{\"name\":\"Petroleum & Petrochemical Engineering Journal\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum & Petrochemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/ppej-16000379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum & Petrochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/ppej-16000379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从 19 世纪至今,二氧化碳排放量呈指数增长,如果不采取严厉措施和计划来防止这种指数增长,后果将是毁灭性的。联合国气候变化大会上达成的开创性协议《巴黎协定》,使实现温室气体净零排放的概念变得更加突出。该协议旨在减轻温室气体排放的影响。为执行二氧化碳净零排放计划,美国能源部设定了一个新目标,即从大气中清除千兆吨二氧化碳(CO2),并以低于 100 美元/吨二氧化碳净当量的价格将其持久储存起来。要实现这一目标,需要准确估算二氧化碳封存能力,以成功实施碳捕集与封存(CCS)技术,并评估 CCS 对减少二氧化碳排放的影响。因此,本文提供了一个模板,利用三种方法准确估算具有初始气帽的枯竭饱和油藏的二氧化碳封存能力:体积法、生产法和基于相关性的方法,并比较了估算的准确性。对墨西哥湾(GOM)朱雀盆地的枯竭 VR273_Q 组合砂进行了案例研究。基于体积的方法得出的确定性和随机(P50)二氧化碳封存容量估算值分别为 121 万吨和 123 万吨,而基于产量和相关性的方法得出的确定性二氧化碳封存容量估算值分别为 132 万吨和 141 万吨。所有三种方法都显示出相似的结果,由于数据缺口(即缺少关键油井的测井记录)导致的岩石物理不确定性造成的偏差很小。不过,基于体积的方法得出的 147 万吨二氧化碳随机(P90)封存容量估计值已经反映了这些不确定性。虽然基于相关性的方法略微高估了二氧化碳封存容量,但它可以作为快速估算的起点,因为它只需要生产数据,而这些数据可以从 GOM 的各种数据库中轻易获得。最后,通过本文,相关机构有机会在充分知情的情况下制定与能源相关的政策和商业决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of CO2 Storage Capacity Estimation in Depleted Oil & Gas Reservoir: A Case Study in Vermillion Basin Gulf of Mexico
CO2 emissions rates have seen an exponential growth from the 19th century up till date, if no drastic measures and plans are implemented to prevent this exponential growth the consequence will be devastating. The notion of achieving net-zero greenhouse gas emissions gained prominence through the Paris Agreement, a groundbreaking accord reached at the United Nations Climate Change Conference. This agreement was devised to mitigate the impact of greenhouse gas emissions. To execute the net-zero CO2 emission plan, the USDOE has set a new goal to remove gigatons of carbon dioxide (CO2 ) from the atmosphere and durably store it for less than $100/ton of net CO2 -equivalent. Making such a goal a reality requires an accurate estimation of CO2 storage capacity for the successful implementation of Carbon Capture and Storage (CCS) technologies, and the assessment of the impact of CCS to the reduction of CO2 emissions. Hence this paper serves as a template for accurately estimating CO2 storage capacity in depleted saturated oil reservoirs with initial gas cap using three approaches: Volumetric, Production and Correlation-based methods and compares the accuracy of the estimates. A case study was conducted on a depleted VR273_Q combination sand in the Vermillion Basin, Gulf of Mexico (GOM). The deterministic and stochastic (P50) CO2 storage capacity estimates from the Volume-based method are 1.21 million tonnes (Mt) and 1.23 Mt respectively, while the deterministic CO2 storage capacity estimates from the Production and Correlationbased method are 1.32 Mt and 1.41 Mt respectively. All three approaches showed similar results, with little deviations attributed to petrophysical uncertainties arising from data gaps i.e., absence of well logs to key wells. However, these uncertainties are captured by Stochastic (P90) CO2 storage capacity estimates of 1.47 Mt from the Volume-based method. Although the Correlation-based approach slightly overestimates the CO2 storage capacity, it can be used as a starting point for quick estimation as it only requires production data which are readily available on various databases for GOM. Finally, through this paper, opportunities for concerned agencies to make well-informed energy-related policies and business decisions are made possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Absorption of Crude Oil from Water Surface Using Shells of Periwinkle, Thales (Ngolo) and Oyster Exploitation and Development of Oil/Gas Marginal Fields in Nigeria and Romania: Technology, Rising Market Development Challenges & Sustainable Energy Transition Development of a New Correlation for Predicting Initial Water Saturation in Carbonate Reservoirs Review of the Technical and Economic Evaluation of the Use of Means of Simultaneous Independent Operation for Solving Technical Problems Advancing Reservoir Performance Optimization through UserFriendly Excel VBA Software Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1