{"title":"界面缓冲层对 Pb(Zr,Ti)O3 薄膜异质结构中印记和畴切换动力学的影响","authors":"Lingzhi Lu, Chunyan Zheng, Weijie Zheng, Chenyu Dong, Yuhao Yue, Yawen Xu, Zheng Wen","doi":"10.1142/s2010135x23400106","DOIUrl":null,"url":null,"abstract":"Interfacial engineering is important for ferroelectric thin-film heterostructures because of the modulation of boundary conditions of the spontaneous polarizations and their switching behaviors, which are essential for ferroelectric electronics. In this work, we study the effects of interfacial buffering layer, 5-nm-thick SrTiO3 (STO), on the imprint and domain switching of epitaxial Pt/Pb(Zr,Ti)O3/SrRuO3 (SRO) thin-film heterostructures and capacitors. By buffering the ultrathin SrTiO3 layer at the Pb(Zr,Ti)O3 surface, the imprint effect can be dramatically alleviated as observed in the piezoresponse force microscopy (PFM)-measured domain structures and polarization–electric field hysteresis loops in thin-film capacitors. However, when the SrTiO3 layer is buffered at the Pb(Zr,Ti)O3/SrRuO3 interface, the imprint effect is slightly increased. These phenomena are explained based on the band alignments among the Pt and SrRuO3 electrodes and the Pb(Zr,Ti)O3 layer associated with the existence of oxygen vacancies in the SrTiO3 layer. With the reduction of imprint effect, the domain switching dynamics are also improved in the SrTiO3-buffered Pb(Zr,Ti)O3 capacitor, in which the switching activation field is decreased by about 45.3% in comparison with that of the pristine capacitor. These results facilitate the design and optimization of ferroelectric devices with the improvements in domain configurations, switching behaviors and band alignments.","PeriodicalId":14871,"journal":{"name":"Journal of Advanced Dielectrics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of interfacial buffering layer on imprint and domain switching dynamics in Pb(Zr,Ti)O3 thin-film heterostructures\",\"authors\":\"Lingzhi Lu, Chunyan Zheng, Weijie Zheng, Chenyu Dong, Yuhao Yue, Yawen Xu, Zheng Wen\",\"doi\":\"10.1142/s2010135x23400106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interfacial engineering is important for ferroelectric thin-film heterostructures because of the modulation of boundary conditions of the spontaneous polarizations and their switching behaviors, which are essential for ferroelectric electronics. In this work, we study the effects of interfacial buffering layer, 5-nm-thick SrTiO3 (STO), on the imprint and domain switching of epitaxial Pt/Pb(Zr,Ti)O3/SrRuO3 (SRO) thin-film heterostructures and capacitors. By buffering the ultrathin SrTiO3 layer at the Pb(Zr,Ti)O3 surface, the imprint effect can be dramatically alleviated as observed in the piezoresponse force microscopy (PFM)-measured domain structures and polarization–electric field hysteresis loops in thin-film capacitors. However, when the SrTiO3 layer is buffered at the Pb(Zr,Ti)O3/SrRuO3 interface, the imprint effect is slightly increased. These phenomena are explained based on the band alignments among the Pt and SrRuO3 electrodes and the Pb(Zr,Ti)O3 layer associated with the existence of oxygen vacancies in the SrTiO3 layer. With the reduction of imprint effect, the domain switching dynamics are also improved in the SrTiO3-buffered Pb(Zr,Ti)O3 capacitor, in which the switching activation field is decreased by about 45.3% in comparison with that of the pristine capacitor. These results facilitate the design and optimization of ferroelectric devices with the improvements in domain configurations, switching behaviors and band alignments.\",\"PeriodicalId\":14871,\"journal\":{\"name\":\"Journal of Advanced Dielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Dielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010135x23400106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010135x23400106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Effects of interfacial buffering layer on imprint and domain switching dynamics in Pb(Zr,Ti)O3 thin-film heterostructures
Interfacial engineering is important for ferroelectric thin-film heterostructures because of the modulation of boundary conditions of the spontaneous polarizations and their switching behaviors, which are essential for ferroelectric electronics. In this work, we study the effects of interfacial buffering layer, 5-nm-thick SrTiO3 (STO), on the imprint and domain switching of epitaxial Pt/Pb(Zr,Ti)O3/SrRuO3 (SRO) thin-film heterostructures and capacitors. By buffering the ultrathin SrTiO3 layer at the Pb(Zr,Ti)O3 surface, the imprint effect can be dramatically alleviated as observed in the piezoresponse force microscopy (PFM)-measured domain structures and polarization–electric field hysteresis loops in thin-film capacitors. However, when the SrTiO3 layer is buffered at the Pb(Zr,Ti)O3/SrRuO3 interface, the imprint effect is slightly increased. These phenomena are explained based on the band alignments among the Pt and SrRuO3 electrodes and the Pb(Zr,Ti)O3 layer associated with the existence of oxygen vacancies in the SrTiO3 layer. With the reduction of imprint effect, the domain switching dynamics are also improved in the SrTiO3-buffered Pb(Zr,Ti)O3 capacitor, in which the switching activation field is decreased by about 45.3% in comparison with that of the pristine capacitor. These results facilitate the design and optimization of ferroelectric devices with the improvements in domain configurations, switching behaviors and band alignments.
期刊介绍:
The Journal of Advanced Dielectrics is an international peer-reviewed journal for original contributions on the understanding and applications of dielectrics in modern electronic devices and systems. The journal seeks to provide an interdisciplinary forum for the rapid communication of novel research of high quality in, but not limited to, the following topics: Fundamentals of dielectrics (ab initio or first-principles calculations, density functional theory, phenomenological approaches). Polarization and related phenomena (spontaneous polarization, domain structure, polarization reversal). Dielectric relaxation (universal relaxation law, relaxor ferroelectrics, giant permittivity, flexoelectric effect). Ferroelectric materials and devices (single crystals and ceramics). Thin/thick films and devices (ferroelectric memory devices, capacitors). Piezoelectric materials and applications (lead-based piezo-ceramics and crystals, lead-free piezoelectrics). Pyroelectric materials and devices Multiferroics (single phase multiferroics, composite ferromagnetic ferroelectric materials). Electrooptic and photonic materials. Energy harvesting and storage materials (polymer, composite, super-capacitor). Phase transitions and structural characterizations. Microwave and milimeterwave dielectrics. Nanostructure, size effects and characterizations. Engineering dielectrics for high voltage applications (insulation, electrical breakdown). Modeling (microstructure evolution and microstructure-property relationships, multiscale modeling of dielectrics).