Mingyu Yu, Jiayang Wang, Sahani A. Iddawela, Molly McDonough, Jessica L. Thompson, S. Sinnott, D. Reifsnyder Hickey, Stephanie Law
{"title":"范德瓦尔斯共卤化物薄膜生长所需的 GaAs(111)B 基底的处理和老化研究","authors":"Mingyu Yu, Jiayang Wang, Sahani A. Iddawela, Molly McDonough, Jessica L. Thompson, S. Sinnott, D. Reifsnyder Hickey, Stephanie Law","doi":"10.1116/6.0003470","DOIUrl":null,"url":null,"abstract":"GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment and aging studies of GaAs(111)B substrates for van der Waals chalcogenide film growth\",\"authors\":\"Mingyu Yu, Jiayang Wang, Sahani A. Iddawela, Molly McDonough, Jessica L. Thompson, S. Sinnott, D. Reifsnyder Hickey, Stephanie Law\",\"doi\":\"10.1116/6.0003470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
GaAs(111)B是市场上可买到的基底,广泛用于生长范德华共卤化物薄膜。利用分子束外延技术可以在 GaAs(111)B 基底上沉积出晶圆级的高质量晶体薄膜。然而,在使用 GaAs(111)B 时仍然存在两个障碍:首先,表面悬空键使范德华材料的生长面临挑战;其次,As 端面在空气中容易老化。本研究探讨了一种热处理方法,在对 GaAs(111)B 衬底进行脱氧的同时,用 Se 对表面悬空键进行钝化。通过优化处理参数,我们获得了一个平整且完全脱氧的平台,可用于后续薄膜生长,并且操作具有高度的可重复性。此外,通过第一原理计算,我们发现硒钝化后的 GaAs(111)B 最有利的能量表面由 25% 的 As 原子和 75% 的 Se 原子组成。最后,我们发现使用食品级真空包装的常见存储方法无法完全防止基底老化,即使经过热处理,老化仍然会影响后续生长。因此,我们建议使用氮气吹扫的容器来进行更好的保存。
Treatment and aging studies of GaAs(111)B substrates for van der Waals chalcogenide film growth
GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.