如何确定您的时间序列输入是否适合人工智能应用?评估环境分析中的最低数据要求

EDIS Pub Date : 2024-01-11 DOI:10.32473/edis-ae594-2024
Eduart Murcia Botache, Sandra M. Guzmán
{"title":"如何确定您的时间序列输入是否适合人工智能应用?评估环境分析中的最低数据要求","authors":"Eduart Murcia Botache, Sandra M. Guzmán","doi":"10.32473/edis-ae594-2024","DOIUrl":null,"url":null,"abstract":"This publication is intended for scientists, technicians, and decision-makers who want to start using machine learning (ML) in their projects. It provides an overview of the factors that should be considered when employing ML applications with time series (TS) data as input. Written by Eduart Murcia and Sandra M. Guzmán, and published by the UF/IFAS Department of Agricultural and Biological Engineering, January 2024.","PeriodicalId":11471,"journal":{"name":"EDIS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Identify If Your Time Series Inputs Are Adequate for AI Applications: Assessing Minimum Data Requirements in Environmental Analyses\",\"authors\":\"Eduart Murcia Botache, Sandra M. Guzmán\",\"doi\":\"10.32473/edis-ae594-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This publication is intended for scientists, technicians, and decision-makers who want to start using machine learning (ML) in their projects. It provides an overview of the factors that should be considered when employing ML applications with time series (TS) data as input. Written by Eduart Murcia and Sandra M. Guzmán, and published by the UF/IFAS Department of Agricultural and Biological Engineering, January 2024.\",\"PeriodicalId\":11471,\"journal\":{\"name\":\"EDIS\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/edis-ae594-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/edis-ae594-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本出版物面向希望在其项目中开始使用机器学习(ML)的科学家、技术人员和决策者。它概述了在使用时间序列 (TS) 数据作为输入的 ML 应用程序时应考虑的因素。作者:Eduart Murcia 和 Sandra M. Guzmán,由 UF/IFAS 农业与生物工程系于 2024 年 1 月出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to Identify If Your Time Series Inputs Are Adequate for AI Applications: Assessing Minimum Data Requirements in Environmental Analyses
This publication is intended for scientists, technicians, and decision-makers who want to start using machine learning (ML) in their projects. It provides an overview of the factors that should be considered when employing ML applications with time series (TS) data as input. Written by Eduart Murcia and Sandra M. Guzmán, and published by the UF/IFAS Department of Agricultural and Biological Engineering, January 2024.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cultivo de vainilla en el sur de Florida Safe Tractor Operations: Loading and Towing Designing Instruction to Guide Reflection Hoja informativa de la vida silvestre de Florida: el puma de Florida A Primer on Genetic Testing for Horse Owners and Breeders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1