{"title":"可逆流程图程序的部分评估","authors":"Louis Normann, Robert Glück","doi":"10.1145/3635800.3636967","DOIUrl":null,"url":null,"abstract":"Flowchart languages are traditionally used to study the foundations of partial evaluation. This article presents a systematic and formal development of a method for partial evaluation of a reversible flowchart language. The results confirm that partial evaluation in this unconventional computing paradigm shows effects consistent with traditional partial evaluation. Experiments include specializing a symmetric encryption algorithm and a reversible interpreter for Bennett's reversible Turing machines. A defining feature of reversible languages is their invertibility. This study reports the first experiments composing program inversion and partial evaluation. The presented method is fully implemented. It is potentially of interest because reversible computing has found applications in areas as diverse as low-power computing, debugging, robotics, and quantum-inspired computing.","PeriodicalId":516782,"journal":{"name":"Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partial Evaluation of Reversible Flowchart Programs\",\"authors\":\"Louis Normann, Robert Glück\",\"doi\":\"10.1145/3635800.3636967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flowchart languages are traditionally used to study the foundations of partial evaluation. This article presents a systematic and formal development of a method for partial evaluation of a reversible flowchart language. The results confirm that partial evaluation in this unconventional computing paradigm shows effects consistent with traditional partial evaluation. Experiments include specializing a symmetric encryption algorithm and a reversible interpreter for Bennett's reversible Turing machines. A defining feature of reversible languages is their invertibility. This study reports the first experiments composing program inversion and partial evaluation. The presented method is fully implemented. It is potentially of interest because reversible computing has found applications in areas as diverse as low-power computing, debugging, robotics, and quantum-inspired computing.\",\"PeriodicalId\":516782,\"journal\":{\"name\":\"Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3635800.3636967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3635800.3636967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partial Evaluation of Reversible Flowchart Programs
Flowchart languages are traditionally used to study the foundations of partial evaluation. This article presents a systematic and formal development of a method for partial evaluation of a reversible flowchart language. The results confirm that partial evaluation in this unconventional computing paradigm shows effects consistent with traditional partial evaluation. Experiments include specializing a symmetric encryption algorithm and a reversible interpreter for Bennett's reversible Turing machines. A defining feature of reversible languages is their invertibility. This study reports the first experiments composing program inversion and partial evaluation. The presented method is fully implemented. It is potentially of interest because reversible computing has found applications in areas as diverse as low-power computing, debugging, robotics, and quantum-inspired computing.