弥漫性轴突损伤中的弥散峰度成像和放射组学

R. Afandiev, N. Zakharova, G. V. Danilov, E. Pogosbekyan, S. Goryaynov, Ya. A. Latyshev, A. V. Kosyr’kova, A. D. Kravchuk, D. Y. Usachev, I. Pronin
{"title":"弥漫性轴突损伤中的弥散峰度成像和放射组学","authors":"R. Afandiev, N. Zakharova, G. V. Danilov, E. Pogosbekyan, S. Goryaynov, Ya. A. Latyshev, A. V. Kosyr’kova, A. D. Kravchuk, D. Y. Usachev, I. Pronin","doi":"10.52560/2713-0118-2024-1-51-65","DOIUrl":null,"url":null,"abstract":"This study aimed to assess the feasibility of radiomic features derived from diffusion kurtosis imaging (DK MRI) in identifying microstructural brain damage in diffuse axonal injury (DAI) and predicting its outcome. We hypothesized that radiomic features, computed from parametric DK MRI maps, may differ between healthy individuals and those with trauma, and may be related to DAI outcomes. The study included 31 DAI patients and 12 healthy volunteers. A total of 342,300 radiomic features were calculated (2282 features for each combination of 10 parametric DK maps with 15 regions of interest). Our findings suggest that the set of radiomic features effectively distinguishes between healthy and damaged brain tissues, and can predict DAI outcome. A broad spectrum of radiomic parameters based on DK MRI data showed high diagnostic and prognostic potential in DAI, presenting advantages beyond the traditionally used average values for the regions of interest on parametric DK MRI maps.","PeriodicalId":516169,"journal":{"name":"Radiology - Practice","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Kurtosis Imaging and Radiomics in Diffuse Axonal Injury\",\"authors\":\"R. Afandiev, N. Zakharova, G. V. Danilov, E. Pogosbekyan, S. Goryaynov, Ya. A. Latyshev, A. V. Kosyr’kova, A. D. Kravchuk, D. Y. Usachev, I. Pronin\",\"doi\":\"10.52560/2713-0118-2024-1-51-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to assess the feasibility of radiomic features derived from diffusion kurtosis imaging (DK MRI) in identifying microstructural brain damage in diffuse axonal injury (DAI) and predicting its outcome. We hypothesized that radiomic features, computed from parametric DK MRI maps, may differ between healthy individuals and those with trauma, and may be related to DAI outcomes. The study included 31 DAI patients and 12 healthy volunteers. A total of 342,300 radiomic features were calculated (2282 features for each combination of 10 parametric DK maps with 15 regions of interest). Our findings suggest that the set of radiomic features effectively distinguishes between healthy and damaged brain tissues, and can predict DAI outcome. A broad spectrum of radiomic parameters based on DK MRI data showed high diagnostic and prognostic potential in DAI, presenting advantages beyond the traditionally used average values for the regions of interest on parametric DK MRI maps.\",\"PeriodicalId\":516169,\"journal\":{\"name\":\"Radiology - Practice\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology - Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52560/2713-0118-2024-1-51-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology - Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52560/2713-0118-2024-1-51-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估从二重灌注峰度成像(DK MRI)中得出的放射学特征在识别二重轴突损伤(DAI)的微结构脑损伤并预测其结果方面的可行性。我们假设,根据DK MRI参数图计算出的放射学特征可能会在健康人和外伤患者之间产生差异,并可能与DAI的预后有关。这项研究包括31名DAI患者和12名健康志愿者。共计算出342,300个放射学特征(15个感兴趣区的10个参数DK图的每个组合有2282个特征)。我们的研究结果表明,这组放射学特征能有效区分健康和受损的脑组织,并能预测DAI的结果。基于DK磁共振成像数据的一系列放射学参数显示出了对DAI的高度诊断和预后潜力,其优势超过了参数化DK磁共振成像图上感兴趣区域的传统平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion Kurtosis Imaging and Radiomics in Diffuse Axonal Injury
This study aimed to assess the feasibility of radiomic features derived from diffusion kurtosis imaging (DK MRI) in identifying microstructural brain damage in diffuse axonal injury (DAI) and predicting its outcome. We hypothesized that radiomic features, computed from parametric DK MRI maps, may differ between healthy individuals and those with trauma, and may be related to DAI outcomes. The study included 31 DAI patients and 12 healthy volunteers. A total of 342,300 radiomic features were calculated (2282 features for each combination of 10 parametric DK maps with 15 regions of interest). Our findings suggest that the set of radiomic features effectively distinguishes between healthy and damaged brain tissues, and can predict DAI outcome. A broad spectrum of radiomic parameters based on DK MRI data showed high diagnostic and prognostic potential in DAI, presenting advantages beyond the traditionally used average values for the regions of interest on parametric DK MRI maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MR morphometry in the diagnosis of MR-negative focal cortical dysplasia (clinical case) Neuroimaging of brain tumors: back to the standardized MRI-protocol Aneurysm Wall Contrast on Magnetic Resonance Imaging: A New Predictor of Rupture of Saccular Intracranial Aneurysms Magnetic resonance relaxometry in assessment of morphological properties of brain gliomas: state of the art Diffusion Kurtosis Imaging and Radiomics in Diffuse Axonal Injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1