A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt
{"title":"在 ActiLife 和 RStudio 中生成的 ActiGraph 计数的 24 小时活动周期输出的可比性","authors":"A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt","doi":"10.1123/jmpb.2023-0047","DOIUrl":null,"url":null,"abstract":"Data from ActiGraph accelerometers have long been imported into ActiLife software, where the company’s proprietary “activity counts” were generated in order to understand physical behavior metrics. In 2022, ActiGraph released an open-source method to generate activity counts from any raw, triaxial accelerometer data using Python, which has been translated into RStudio packages. However, it is unclear if outcomes are comparable when generated in ActiLife and RStudio. Therefore, the authors’ technical note systematically compared activity counts and related physical behavior metrics generated from ActiGraph accelerometer data using ActiLife or available packages in RStudio and provides example code to ease implementation of such analyses in RStudio. In addition to comparing triaxial activity counts, physical behavior outputs (sleep, sedentary behavior, light-intensity physical activity, and moderate- to vigorous-intensity physical activity) were compared using multiple nonwear algorithms, epochs, cut points, sleep scoring algorithms, and accelerometer placement sites. Activity counts and physical behavior outcomes were largely the same between ActiLife and the tested packages in RStudio. However, peculiarities in the application of nonwear algorithms to the first and last portions of a data file (that occurred on partial, first or last days of data collection), differences in rounding, and handling of counts values on the borderline of activity intensities resulted in small but inconsequential differences in some files. The hope is that researchers and both hardware and software manufacturers continue to push efforts toward transparency in data analysis and interpretation, which will enhance comparability across devices and studies and help to advance fields examining links between physical behavior and health.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparability of 24-hr Activity Cycle Outputs From ActiGraph Counts Generated in ActiLife and RStudio\",\"authors\":\"A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt\",\"doi\":\"10.1123/jmpb.2023-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data from ActiGraph accelerometers have long been imported into ActiLife software, where the company’s proprietary “activity counts” were generated in order to understand physical behavior metrics. In 2022, ActiGraph released an open-source method to generate activity counts from any raw, triaxial accelerometer data using Python, which has been translated into RStudio packages. However, it is unclear if outcomes are comparable when generated in ActiLife and RStudio. Therefore, the authors’ technical note systematically compared activity counts and related physical behavior metrics generated from ActiGraph accelerometer data using ActiLife or available packages in RStudio and provides example code to ease implementation of such analyses in RStudio. In addition to comparing triaxial activity counts, physical behavior outputs (sleep, sedentary behavior, light-intensity physical activity, and moderate- to vigorous-intensity physical activity) were compared using multiple nonwear algorithms, epochs, cut points, sleep scoring algorithms, and accelerometer placement sites. Activity counts and physical behavior outcomes were largely the same between ActiLife and the tested packages in RStudio. However, peculiarities in the application of nonwear algorithms to the first and last portions of a data file (that occurred on partial, first or last days of data collection), differences in rounding, and handling of counts values on the borderline of activity intensities resulted in small but inconsequential differences in some files. The hope is that researchers and both hardware and software manufacturers continue to push efforts toward transparency in data analysis and interpretation, which will enhance comparability across devices and studies and help to advance fields examining links between physical behavior and health.\",\"PeriodicalId\":73572,\"journal\":{\"name\":\"Journal for the measurement of physical behaviour\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for the measurement of physical behaviour\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1123/jmpb.2023-0047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2023-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparability of 24-hr Activity Cycle Outputs From ActiGraph Counts Generated in ActiLife and RStudio
Data from ActiGraph accelerometers have long been imported into ActiLife software, where the company’s proprietary “activity counts” were generated in order to understand physical behavior metrics. In 2022, ActiGraph released an open-source method to generate activity counts from any raw, triaxial accelerometer data using Python, which has been translated into RStudio packages. However, it is unclear if outcomes are comparable when generated in ActiLife and RStudio. Therefore, the authors’ technical note systematically compared activity counts and related physical behavior metrics generated from ActiGraph accelerometer data using ActiLife or available packages in RStudio and provides example code to ease implementation of such analyses in RStudio. In addition to comparing triaxial activity counts, physical behavior outputs (sleep, sedentary behavior, light-intensity physical activity, and moderate- to vigorous-intensity physical activity) were compared using multiple nonwear algorithms, epochs, cut points, sleep scoring algorithms, and accelerometer placement sites. Activity counts and physical behavior outcomes were largely the same between ActiLife and the tested packages in RStudio. However, peculiarities in the application of nonwear algorithms to the first and last portions of a data file (that occurred on partial, first or last days of data collection), differences in rounding, and handling of counts values on the borderline of activity intensities resulted in small but inconsequential differences in some files. The hope is that researchers and both hardware and software manufacturers continue to push efforts toward transparency in data analysis and interpretation, which will enhance comparability across devices and studies and help to advance fields examining links between physical behavior and health.