轨道交通共建项目钢-混凝土复合结构系统的抗震性能分析

Chunsen Wang, Ruisong Li, Min Xing, Liangdong Zhuang, Xin Nie, Yan Zou
{"title":"轨道交通共建项目钢-混凝土复合结构系统的抗震性能分析","authors":"Chunsen Wang, Ruisong Li, Min Xing, Liangdong Zhuang, Xin Nie, Yan Zou","doi":"10.3724/j.gyjzg23082210","DOIUrl":null,"url":null,"abstract":": With the development of urban rail transit and the deepening of integration of under-and above-ground urban space, the rail transit co-construction project has become a new direction of the public transportation-oriented development mode. Relying on the Dongguan Xiping Station project, a combined structural scheme was designed for the long-span building cover and conversion beam area, which could reduce the height of beams by 28%-33%, the dead weight by 49%-66%, and the cost by 7%-36%. The overall model of the steel reinforced concrete structure and the steel-concrete composite structure were established and the seismic performance analysis of the two structures under different earthquake was carried out by YJK and MIDAS Gen. The composite structure decreased the interlayer displacement angle under rarely occurred earthquake, which suggested that it showed a better seismic resistance while maintaining natural vibration characteristics similar to the steel reinforced concrete structure. It was notable that the bending-torsional coupling effect in the transformation beam area is significant, resulting in the torque reached up to 2 719.4 kN·m; and the stress of the long-span steel structure reached up to 207 MPa.","PeriodicalId":516737,"journal":{"name":"Industrial Construction","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Performance Analysis of Steel-Concrete Composite Structural System for Rail Transit Co-Construction Projects\",\"authors\":\"Chunsen Wang, Ruisong Li, Min Xing, Liangdong Zhuang, Xin Nie, Yan Zou\",\"doi\":\"10.3724/j.gyjzg23082210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": With the development of urban rail transit and the deepening of integration of under-and above-ground urban space, the rail transit co-construction project has become a new direction of the public transportation-oriented development mode. Relying on the Dongguan Xiping Station project, a combined structural scheme was designed for the long-span building cover and conversion beam area, which could reduce the height of beams by 28%-33%, the dead weight by 49%-66%, and the cost by 7%-36%. The overall model of the steel reinforced concrete structure and the steel-concrete composite structure were established and the seismic performance analysis of the two structures under different earthquake was carried out by YJK and MIDAS Gen. The composite structure decreased the interlayer displacement angle under rarely occurred earthquake, which suggested that it showed a better seismic resistance while maintaining natural vibration characteristics similar to the steel reinforced concrete structure. It was notable that the bending-torsional coupling effect in the transformation beam area is significant, resulting in the torque reached up to 2 719.4 kN·m; and the stress of the long-span steel structure reached up to 207 MPa.\",\"PeriodicalId\":516737,\"journal\":{\"name\":\"Industrial Construction\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/j.gyjzg23082210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/j.gyjzg23082210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:随着城市轨道交通的发展和城市地上地下空间一体化的深化,轨道交通共建工程已成为公共交通导向型发展模式的新方向。依托东莞西平站项目,设计了大跨度建筑盖板与转换梁区组合结构方案,可使梁高降低28%-33%,自重降低49%-66%,造价降低7%-36%。建立了钢筋混凝土结构和钢-混凝土复合结构的整体模型,并利用 YJK 和 MIDAS Gen 对两种结构在不同地震作用下的抗震性能进行了分析。值得注意的是,转换梁区域的弯扭耦合效应显著,导致扭矩高达 2 719.4 kN-m;大跨度钢结构的应力高达 207 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Performance Analysis of Steel-Concrete Composite Structural System for Rail Transit Co-Construction Projects
: With the development of urban rail transit and the deepening of integration of under-and above-ground urban space, the rail transit co-construction project has become a new direction of the public transportation-oriented development mode. Relying on the Dongguan Xiping Station project, a combined structural scheme was designed for the long-span building cover and conversion beam area, which could reduce the height of beams by 28%-33%, the dead weight by 49%-66%, and the cost by 7%-36%. The overall model of the steel reinforced concrete structure and the steel-concrete composite structure were established and the seismic performance analysis of the two structures under different earthquake was carried out by YJK and MIDAS Gen. The composite structure decreased the interlayer displacement angle under rarely occurred earthquake, which suggested that it showed a better seismic resistance while maintaining natural vibration characteristics similar to the steel reinforced concrete structure. It was notable that the bending-torsional coupling effect in the transformation beam area is significant, resulting in the torque reached up to 2 719.4 kN·m; and the stress of the long-span steel structure reached up to 207 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safety Monitoring Method for High-Formwork Support Structures Based on Computer Vision Recognition Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service Research on Role Identification and Evolution of Hospital Staff in Emergency Evacuation Situations Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data Comparisons of Seismic Hazard Analysis Methods for Engineering Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1