{"title":"用于 5G/6G 毫米波应用的紧凑型新型四贴片高增益三频带微带天线","authors":"R. K. Singh, K. Mamta","doi":"10.3329/jsr.v16i1.66715","DOIUrl":null,"url":null,"abstract":"This paper presents a compact, novel, quad patch and triple band single substrate microstrip patch antenna for 5G/6G mm wave applications. The aim is to design an antenna within the K-band with three resonance frequencies at 24, 29, and 34 GHz. The antenna is designed on a volumetric dimension of 11×12.7×1.6 mm3. The substrate used is FR4 (dielectric constant 4.4), having a loss tangent of 0.0022. A microstrip line of width 1 mm for a 50 Ω impedance line is used to match with the load antenna, which has four rectangular connected patches. Patch dimensions come from standard antenna equations and simulation done on Ansys High-Frequency Structure Simulator software. Validation of simulated results is done through measurements on the prototype antenna. A substantial good agreement is found between the simulated and measured results. The gain of the proposed antenna is 6.16 dBi, with return loss being ≤-10 dB. Bandwidths are 1.1 GHz (23.8 - 24.9 GHz), 0.9 GHz (28.6 - 29.5 GHz), and 0.8 GHz (33.7 – 34.5 GHz), respectively. The far-field radiation characteristics of both E-plane and H-plane are also reported. The proposed design is suitable for mm wave applications, including smart vehicles, global positioning systems, radio frequency identifications, etc.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"121 5-6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact Novel Quad Patch High Gain Triple Band Microstrip Antenna for 5G/6G mm Wave Applications\",\"authors\":\"R. K. Singh, K. Mamta\",\"doi\":\"10.3329/jsr.v16i1.66715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compact, novel, quad patch and triple band single substrate microstrip patch antenna for 5G/6G mm wave applications. The aim is to design an antenna within the K-band with three resonance frequencies at 24, 29, and 34 GHz. The antenna is designed on a volumetric dimension of 11×12.7×1.6 mm3. The substrate used is FR4 (dielectric constant 4.4), having a loss tangent of 0.0022. A microstrip line of width 1 mm for a 50 Ω impedance line is used to match with the load antenna, which has four rectangular connected patches. Patch dimensions come from standard antenna equations and simulation done on Ansys High-Frequency Structure Simulator software. Validation of simulated results is done through measurements on the prototype antenna. A substantial good agreement is found between the simulated and measured results. The gain of the proposed antenna is 6.16 dBi, with return loss being ≤-10 dB. Bandwidths are 1.1 GHz (23.8 - 24.9 GHz), 0.9 GHz (28.6 - 29.5 GHz), and 0.8 GHz (33.7 – 34.5 GHz), respectively. The far-field radiation characteristics of both E-plane and H-plane are also reported. The proposed design is suitable for mm wave applications, including smart vehicles, global positioning systems, radio frequency identifications, etc.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"121 5-6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v16i1.66715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v16i1.66715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compact Novel Quad Patch High Gain Triple Band Microstrip Antenna for 5G/6G mm Wave Applications
This paper presents a compact, novel, quad patch and triple band single substrate microstrip patch antenna for 5G/6G mm wave applications. The aim is to design an antenna within the K-band with three resonance frequencies at 24, 29, and 34 GHz. The antenna is designed on a volumetric dimension of 11×12.7×1.6 mm3. The substrate used is FR4 (dielectric constant 4.4), having a loss tangent of 0.0022. A microstrip line of width 1 mm for a 50 Ω impedance line is used to match with the load antenna, which has four rectangular connected patches. Patch dimensions come from standard antenna equations and simulation done on Ansys High-Frequency Structure Simulator software. Validation of simulated results is done through measurements on the prototype antenna. A substantial good agreement is found between the simulated and measured results. The gain of the proposed antenna is 6.16 dBi, with return loss being ≤-10 dB. Bandwidths are 1.1 GHz (23.8 - 24.9 GHz), 0.9 GHz (28.6 - 29.5 GHz), and 0.8 GHz (33.7 – 34.5 GHz), respectively. The far-field radiation characteristics of both E-plane and H-plane are also reported. The proposed design is suitable for mm wave applications, including smart vehicles, global positioning systems, radio frequency identifications, etc.