{"title":"利用最短路径传输技术增强 WSN 中的修正能量","authors":"Ajaegbu Chigozirim, Adediran Oluwaseyi","doi":"10.2478/ijanmc-2024-0004","DOIUrl":null,"url":null,"abstract":"\n This study introduced a novel energy enhancement approach for Wireless Sensor Networks (WSNs) by leveraging the shortest path transmission technique to minimize energy consumption and extend the network’s lifetime. Unlike traditional methods that heavily relied on cluster heads (CHs) for data transmission, our model proposed a non-cluster-based routing algorithm, utilizing Dijkstra’s algorithm to identify the most energy-efficient paths for data transmission. Simulation results, based on varying node densities (100, 200, and 300 nodes) within a 200x200 network area, demonstrated the effectiveness of our approach. Our findings indicated a significant reduction in energy consumption, with the network lifetime extending to approximately 100,000 rounds, surpassing traditional LEACH-based and other related protocols. This enhancement not only promised a sustainable WSN deployment but also offered a scalable solution adaptable to different network sizes and configurations.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"100 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Energy Enhancement in WSN Using the Shortest Path Transmission Technique\",\"authors\":\"Ajaegbu Chigozirim, Adediran Oluwaseyi\",\"doi\":\"10.2478/ijanmc-2024-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study introduced a novel energy enhancement approach for Wireless Sensor Networks (WSNs) by leveraging the shortest path transmission technique to minimize energy consumption and extend the network’s lifetime. Unlike traditional methods that heavily relied on cluster heads (CHs) for data transmission, our model proposed a non-cluster-based routing algorithm, utilizing Dijkstra’s algorithm to identify the most energy-efficient paths for data transmission. Simulation results, based on varying node densities (100, 200, and 300 nodes) within a 200x200 network area, demonstrated the effectiveness of our approach. Our findings indicated a significant reduction in energy consumption, with the network lifetime extending to approximately 100,000 rounds, surpassing traditional LEACH-based and other related protocols. This enhancement not only promised a sustainable WSN deployment but also offered a scalable solution adaptable to different network sizes and configurations.\",\"PeriodicalId\":193299,\"journal\":{\"name\":\"International Journal of Advanced Network, Monitoring and Controls\",\"volume\":\"100 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Network, Monitoring and Controls\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijanmc-2024-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijanmc-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Energy Enhancement in WSN Using the Shortest Path Transmission Technique
This study introduced a novel energy enhancement approach for Wireless Sensor Networks (WSNs) by leveraging the shortest path transmission technique to minimize energy consumption and extend the network’s lifetime. Unlike traditional methods that heavily relied on cluster heads (CHs) for data transmission, our model proposed a non-cluster-based routing algorithm, utilizing Dijkstra’s algorithm to identify the most energy-efficient paths for data transmission. Simulation results, based on varying node densities (100, 200, and 300 nodes) within a 200x200 network area, demonstrated the effectiveness of our approach. Our findings indicated a significant reduction in energy consumption, with the network lifetime extending to approximately 100,000 rounds, surpassing traditional LEACH-based and other related protocols. This enhancement not only promised a sustainable WSN deployment but also offered a scalable solution adaptable to different network sizes and configurations.