利用语义分割技术对超光谱图像进行基于对象的图像分析

Amit Kumar Sharma, Manju Bargavi, Akhilendra Pratap Singh
{"title":"利用语义分割技术对超光谱图像进行基于对象的图像分析","authors":"Amit Kumar Sharma, Manju Bargavi, Akhilendra Pratap Singh","doi":"10.1109/ICOCWC60930.2024.10470905","DOIUrl":null,"url":null,"abstract":"Object-based image analysis of Hyperspectral Imagery using Semantic Segmentation strategies is a singular approach for analyzing far-off sensing statistics. This method leverages the energy of a superior system gaining knowledge of (ML) and computer vision algorithms to analyze multidimensional hyperspectral image datasets. The goal is to robustly organize pixels into clusters in step with their spectral and spatial traits. Those clusters are then used to give meaningful records approximately the content material of the photo., the enter pix are pre-processed to reduce noise and boom contrast. A semantic segmentation algorithm is then used to generate excessive-degree masks of the items of interest. The outcomes of those masks are mixed with the input hyperspectral statistics to create several feature vectors describing the spectral and texture homes of every cluster. Sooner or later, a device-mastering algorithm categorizes the gadgets consistent with their traits, presenting precise information about the items in the picture.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"18 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object-Based Image Analysis of Hyper Spectral Imagery Using Semantic Segmentation Techniques\",\"authors\":\"Amit Kumar Sharma, Manju Bargavi, Akhilendra Pratap Singh\",\"doi\":\"10.1109/ICOCWC60930.2024.10470905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object-based image analysis of Hyperspectral Imagery using Semantic Segmentation strategies is a singular approach for analyzing far-off sensing statistics. This method leverages the energy of a superior system gaining knowledge of (ML) and computer vision algorithms to analyze multidimensional hyperspectral image datasets. The goal is to robustly organize pixels into clusters in step with their spectral and spatial traits. Those clusters are then used to give meaningful records approximately the content material of the photo., the enter pix are pre-processed to reduce noise and boom contrast. A semantic segmentation algorithm is then used to generate excessive-degree masks of the items of interest. The outcomes of those masks are mixed with the input hyperspectral statistics to create several feature vectors describing the spectral and texture homes of every cluster. Sooner or later, a device-mastering algorithm categorizes the gadgets consistent with their traits, presenting precise information about the items in the picture.\",\"PeriodicalId\":518901,\"journal\":{\"name\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"volume\":\"18 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCWC60930.2024.10470905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用语义分割策略对高光谱图像进行基于物体的图像分析,是分析遥感统计数据的一种独特方法。该方法利用高级系统获取知识(ML)和计算机视觉算法的能量来分析多维高光谱图像数据集。其目标是根据像素的光谱和空间特征,将像素稳健地组织成群。然后利用这些聚类来提供有关照片内容材料的有意义的记录。然后使用语义分割算法生成感兴趣项目的高阶掩码。这些掩码的结果与输入的高光谱统计数据混合,以创建描述每个集群的光谱和纹理家园的多个特征向量。随后,设备管理算法会根据小工具的特征对其进行分类,从而提供有关图片中物品的精确信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object-Based Image Analysis of Hyper Spectral Imagery Using Semantic Segmentation Techniques
Object-based image analysis of Hyperspectral Imagery using Semantic Segmentation strategies is a singular approach for analyzing far-off sensing statistics. This method leverages the energy of a superior system gaining knowledge of (ML) and computer vision algorithms to analyze multidimensional hyperspectral image datasets. The goal is to robustly organize pixels into clusters in step with their spectral and spatial traits. Those clusters are then used to give meaningful records approximately the content material of the photo., the enter pix are pre-processed to reduce noise and boom contrast. A semantic segmentation algorithm is then used to generate excessive-degree masks of the items of interest. The outcomes of those masks are mixed with the input hyperspectral statistics to create several feature vectors describing the spectral and texture homes of every cluster. Sooner or later, a device-mastering algorithm categorizes the gadgets consistent with their traits, presenting precise information about the items in the picture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Exploration of Data Augmentation Techniques in Ensemble Learning for Medical Image Segmentation with Transfer Learning An Investigation of the Use of Applied Cryptography for Preventing Unauthorized Access Fuzzy Optics Enabled Antenna Model for Push-To-Talk Communication in Underwater Networks Assessing Optimal Hyper parameters of Deep Neural Networks on Cancers Datasets Performance Comparison of Routing Protocols for Mobile Wireless Mesh Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1