{"title":"利用自监督迁移学习进行稳健的医学图像分类","authors":"Surendra Yadav, Rakesh Kumar Dwivedi, Gobi N","doi":"10.1109/ICOCWC60930.2024.10470710","DOIUrl":null,"url":null,"abstract":"this study appears to use self-supervised transfer mastering for sturdy scientific photo classes. Switch getting to know is a powerful approach for enhancing the accuracy of deep mastering fashions in scientific imaging. This paper investigates using self-supervised getting-to-know techniques for scientific picture classes within characteristic-based procedures. By leveraging self-supervised schooling strategies, consisting of contrastive mastering, distributed representations, clustering, pseudo-venture gaining knowledge of, and self-supervised multi-undertaking gaining knowledge of, the proposed technique can learn representations that are extra sturdy to the area shift of various clinical imaging datasets. Experiments performed on an extensive x-ray and ultrasound snapshots dataset reveal that the proposed approach affords extra improvement in type accuracy compared to traditional feature-primarily based techniques.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"20 13","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Self-Supervised Transfer Learning for Robust Medical Image Classification\",\"authors\":\"Surendra Yadav, Rakesh Kumar Dwivedi, Gobi N\",\"doi\":\"10.1109/ICOCWC60930.2024.10470710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this study appears to use self-supervised transfer mastering for sturdy scientific photo classes. Switch getting to know is a powerful approach for enhancing the accuracy of deep mastering fashions in scientific imaging. This paper investigates using self-supervised getting-to-know techniques for scientific picture classes within characteristic-based procedures. By leveraging self-supervised schooling strategies, consisting of contrastive mastering, distributed representations, clustering, pseudo-venture gaining knowledge of, and self-supervised multi-undertaking gaining knowledge of, the proposed technique can learn representations that are extra sturdy to the area shift of various clinical imaging datasets. Experiments performed on an extensive x-ray and ultrasound snapshots dataset reveal that the proposed approach affords extra improvement in type accuracy compared to traditional feature-primarily based techniques.\",\"PeriodicalId\":518901,\"journal\":{\"name\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"volume\":\"20 13\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCWC60930.2024.10470710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这项研究似乎将自监督转移掌握用于坚固的科学照片类。在科学成像中,转换获取知识是提高深度掌握方法准确性的有力方法。本文研究了在基于特征的程序中对科学图片类别使用自监督获取知识技术。通过利用自监督学习策略(包括对比掌握、分布式表示、聚类、伪探险获取知识和自监督多目标获取知识),所提出的技术可以学习到对各种临床成像数据集的区域变化更坚固的表示。在一个广泛的 X 射线和超声波快照数据集上进行的实验表明,与传统的基于特征的技术相比,所提出的方法能进一步提高类型准确性。
Leveraging Self-Supervised Transfer Learning for Robust Medical Image Classification
this study appears to use self-supervised transfer mastering for sturdy scientific photo classes. Switch getting to know is a powerful approach for enhancing the accuracy of deep mastering fashions in scientific imaging. This paper investigates using self-supervised getting-to-know techniques for scientific picture classes within characteristic-based procedures. By leveraging self-supervised schooling strategies, consisting of contrastive mastering, distributed representations, clustering, pseudo-venture gaining knowledge of, and self-supervised multi-undertaking gaining knowledge of, the proposed technique can learn representations that are extra sturdy to the area shift of various clinical imaging datasets. Experiments performed on an extensive x-ray and ultrasound snapshots dataset reveal that the proposed approach affords extra improvement in type accuracy compared to traditional feature-primarily based techniques.