利用增强型 DNN 架构进行高效双模广义空间调制检测

Zihui Wang, Xueqin Jiang, Jinming Yu, Miaowen Wen, Jun Li, Han Hai
{"title":"利用增强型 DNN 架构进行高效双模广义空间调制检测","authors":"Zihui Wang, Xueqin Jiang, Jinming Yu, Miaowen Wen, Jun Li, Han Hai","doi":"10.1109/ICEIC61013.2024.10457089","DOIUrl":null,"url":null,"abstract":"Dual-mode generalized spatial modulation (DM-GSM) enhances spectral efficiency in GSM systems using two modes across transmit antennas. However, interference between antennas poses a challenge for signal detection. For this, a deep learning detector, the dual-mode deep neural network (DM-DNN), is proposed. The DM-DNN enables simultaneous detection of the antenna mode and modulation symbol through its network structure and label generation. A loss function is proposed to train the DM-DNN, approximating optimal bit error rate (BER) performance. Simulation results demonstrate that the DM-DNN achieves BER performance close to the maximum likelihood (ML) detector while significantly reducing complexity.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Dual-Mode Generalized Spatial Modulation Detection with Enhanced DNN Architecture\",\"authors\":\"Zihui Wang, Xueqin Jiang, Jinming Yu, Miaowen Wen, Jun Li, Han Hai\",\"doi\":\"10.1109/ICEIC61013.2024.10457089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual-mode generalized spatial modulation (DM-GSM) enhances spectral efficiency in GSM systems using two modes across transmit antennas. However, interference between antennas poses a challenge for signal detection. For this, a deep learning detector, the dual-mode deep neural network (DM-DNN), is proposed. The DM-DNN enables simultaneous detection of the antenna mode and modulation symbol through its network structure and label generation. A loss function is proposed to train the DM-DNN, approximating optimal bit error rate (BER) performance. Simulation results demonstrate that the DM-DNN achieves BER performance close to the maximum likelihood (ML) detector while significantly reducing complexity.\",\"PeriodicalId\":518726,\"journal\":{\"name\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"12 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC61013.2024.10457089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双模广义空间调制(DM-GSM)通过在发射天线上使用两种模式来提高 GSM 系统的频谱效率。然而,天线之间的干扰给信号检测带来了挑战。为此,我们提出了一种深度学习检测器--双模深度神经网络(DM-DNN)。DM-DNN 可通过其网络结构和标签生成同时检测天线模式和调制符号。为训练 DM-DNN 提出了近似最佳误码率 (BER) 性能的损失函数。仿真结果表明,DM-DNN 的误码率性能接近最大似然 (ML) 检测器,同时大大降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Dual-Mode Generalized Spatial Modulation Detection with Enhanced DNN Architecture
Dual-mode generalized spatial modulation (DM-GSM) enhances spectral efficiency in GSM systems using two modes across transmit antennas. However, interference between antennas poses a challenge for signal detection. For this, a deep learning detector, the dual-mode deep neural network (DM-DNN), is proposed. The DM-DNN enables simultaneous detection of the antenna mode and modulation symbol through its network structure and label generation. A loss function is proposed to train the DM-DNN, approximating optimal bit error rate (BER) performance. Simulation results demonstrate that the DM-DNN achieves BER performance close to the maximum likelihood (ML) detector while significantly reducing complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improving the Durability of Shaded Pole Induction Motors Used for Refrigerator Fans New Approximate 4:2 Compressor for High Accuracy and Small Area Using MUX Logic A Study on the UWB/Encoder/IMU Sensor Fusion Position Estimation System for the Development of Driving Assistance Technology in Autonomous Driving Wheelchairs DDANet: Dilated Deformable Attention Network for Dynamic Scene Deblurring NIR to LWIR Image Translation for Generating LWIR Image Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1