为低于 8 位的大型语言模型推理寻找最佳浮点格式

Youngdeok Hwang, Janghwan Lee, Jiwoong Park, Jieun Lim, Jungwook Choi
{"title":"为低于 8 位的大型语言模型推理寻找最佳浮点格式","authors":"Youngdeok Hwang, Janghwan Lee, Jiwoong Park, Jieun Lim, Jungwook Choi","doi":"10.1109/ICEIC61013.2024.10457111","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have shown remarkable success in various natural language processing tasks. However, their extensive parameter count leads to significant memory and computational demands. To tackle these challenges, there is growing interest in employing post-training quantization (PTQ) with reduced-precision floating-point (FP) operations. Yet, the optimal FP configuration remains a topic of debate. Existing studies often overlook a thorough analysis of the diverse data distributions found in LLMs and the crucial design choice, denormal. In this paper, we conduct a comprehensive examination of the various data distributions within LLMs and the significance of denormal representation, presenting a mixed-format floating-point framework. Our proposed framework allows for sub-8-bit inference with minimal performance degradation in language modeling and reasoning tasks across a broad spectrum of LLMs.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"40 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching Optimal Floating-Point Format for Sub-8-Bit Large Language Model Inference\",\"authors\":\"Youngdeok Hwang, Janghwan Lee, Jiwoong Park, Jieun Lim, Jungwook Choi\",\"doi\":\"10.1109/ICEIC61013.2024.10457111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) have shown remarkable success in various natural language processing tasks. However, their extensive parameter count leads to significant memory and computational demands. To tackle these challenges, there is growing interest in employing post-training quantization (PTQ) with reduced-precision floating-point (FP) operations. Yet, the optimal FP configuration remains a topic of debate. Existing studies often overlook a thorough analysis of the diverse data distributions found in LLMs and the crucial design choice, denormal. In this paper, we conduct a comprehensive examination of the various data distributions within LLMs and the significance of denormal representation, presenting a mixed-format floating-point framework. Our proposed framework allows for sub-8-bit inference with minimal performance degradation in language modeling and reasoning tasks across a broad spectrum of LLMs.\",\"PeriodicalId\":518726,\"journal\":{\"name\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"40 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC61013.2024.10457111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)在各种自然语言处理任务中取得了显著的成功。然而,其庞大的参数数量导致了巨大的内存和计算需求。为了应对这些挑战,越来越多的人开始关注使用降低精度浮点运算(FP)进行训练后量化(PTQ)。然而,最佳 FP 配置仍是一个争论不休的话题。现有的研究往往忽略了对 LLM 中各种数据分布的全面分析,以及关键的设计选择--非正态分布。在本文中,我们对 LLM 中的各种数据分布和非正态表示的重要性进行了全面研究,并提出了一个混合格式浮点框架。我们提出的框架允许在语言建模和推理任务中使用低于 8 位的推理方法,并在广泛的 LLM 中将性能降低到最低程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Searching Optimal Floating-Point Format for Sub-8-Bit Large Language Model Inference
Large Language Models (LLMs) have shown remarkable success in various natural language processing tasks. However, their extensive parameter count leads to significant memory and computational demands. To tackle these challenges, there is growing interest in employing post-training quantization (PTQ) with reduced-precision floating-point (FP) operations. Yet, the optimal FP configuration remains a topic of debate. Existing studies often overlook a thorough analysis of the diverse data distributions found in LLMs and the crucial design choice, denormal. In this paper, we conduct a comprehensive examination of the various data distributions within LLMs and the significance of denormal representation, presenting a mixed-format floating-point framework. Our proposed framework allows for sub-8-bit inference with minimal performance degradation in language modeling and reasoning tasks across a broad spectrum of LLMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improving the Durability of Shaded Pole Induction Motors Used for Refrigerator Fans New Approximate 4:2 Compressor for High Accuracy and Small Area Using MUX Logic A Study on the UWB/Encoder/IMU Sensor Fusion Position Estimation System for the Development of Driving Assistance Technology in Autonomous Driving Wheelchairs DDANet: Dilated Deformable Attention Network for Dynamic Scene Deblurring NIR to LWIR Image Translation for Generating LWIR Image Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1