小型阵列系统中信号处理设备的在线监测和预测技术研究

S. He, Linlin Shi
{"title":"小型阵列系统中信号处理设备的在线监测和预测技术研究","authors":"S. He, Linlin Shi","doi":"10.1109/ICPECA60615.2024.10471011","DOIUrl":null,"url":null,"abstract":"This article focuses on the problem of fault monitoring and diagnosis in small array systems. We analyzed the composition of the small array system and BIT settings, and proposed a modeling sensitive parameter set for system health management. Based on the fault sensitive parameter set, we provide a feature processing method and process for sensitive parameters. We use machine learning classification methods and time series methods to diagnose and predict faults in small array systems, respectively, achieving high classification and prediction accuracy. The data analysis results indicate that using data-driven small array systems for monitoring and prediction has good engineering application prospects.","PeriodicalId":518671,"journal":{"name":"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)","volume":"45 10","pages":"8-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Online Monitoring and Prediction Technology of Signal Processing Devices in Small Array Systems\",\"authors\":\"S. He, Linlin Shi\",\"doi\":\"10.1109/ICPECA60615.2024.10471011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the problem of fault monitoring and diagnosis in small array systems. We analyzed the composition of the small array system and BIT settings, and proposed a modeling sensitive parameter set for system health management. Based on the fault sensitive parameter set, we provide a feature processing method and process for sensitive parameters. We use machine learning classification methods and time series methods to diagnose and predict faults in small array systems, respectively, achieving high classification and prediction accuracy. The data analysis results indicate that using data-driven small array systems for monitoring and prediction has good engineering application prospects.\",\"PeriodicalId\":518671,\"journal\":{\"name\":\"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)\",\"volume\":\"45 10\",\"pages\":\"8-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECA60615.2024.10471011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA60615.2024.10471011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点讨论了小型阵列系统的故障监测和诊断问题。我们分析了小型阵列系统的组成和 BIT 设置,提出了用于系统健康管理的建模敏感参数集。基于故障敏感参数集,我们提供了敏感参数的特征处理方法和流程。我们利用机器学习分类方法和时间序列方法分别对小型阵列系统进行故障诊断和预测,取得了较高的分类和预测精度。数据分析结果表明,利用数据驱动的小型阵列系统进行监测和预测具有良好的工程应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Online Monitoring and Prediction Technology of Signal Processing Devices in Small Array Systems
This article focuses on the problem of fault monitoring and diagnosis in small array systems. We analyzed the composition of the small array system and BIT settings, and proposed a modeling sensitive parameter set for system health management. Based on the fault sensitive parameter set, we provide a feature processing method and process for sensitive parameters. We use machine learning classification methods and time series methods to diagnose and predict faults in small array systems, respectively, achieving high classification and prediction accuracy. The data analysis results indicate that using data-driven small array systems for monitoring and prediction has good engineering application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Fault Analysis and Remote Fault Diagnosis Technology of New Large Capacity Synchronous Condenser An Integrated Target Recognition Method Based on Improved Faster-RCNN for Apple Detection, Counting, Localization, and Quality Estimation Facial Image Restoration Algorithm Based on Generative Adversarial Networks A Data Retrieval Method Based on AGCN-WGAN Long Term Electricity Consumption Forecast Based on DA-LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1