实现深度神经网络处理-内存仿真的架构级框架

Inseong Hwang, Jihoon Jang, Hyun Kim
{"title":"实现深度神经网络处理-内存仿真的架构级框架","authors":"Inseong Hwang, Jihoon Jang, Hyun Kim","doi":"10.1109/ICEIC61013.2024.10457163","DOIUrl":null,"url":null,"abstract":"The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"364 6","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Architecture-Level Framework for Enabling Processing-Using-Memory Simulations in Deep Neural Networks\",\"authors\":\"Inseong Hwang, Jihoon Jang, Hyun Kim\",\"doi\":\"10.1109/ICEIC61013.2024.10457163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.\",\"PeriodicalId\":518726,\"journal\":{\"name\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"364 6\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC61013.2024.10457163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存处理(PIM)研究中的仿真或布局是一个非常耗时的过程。特别是作为 PIM 子集的内存处理(PUM),由于处理单元在高密度数据阵列中的定位,其复杂程度更高。正因为如此,利用仿真来有效验证 PIM 硬件以启动 PIM 研究就显得尤为重要。为此,我们修改了内存模拟器 DRAMsim3 以实现 PUM 系统,并在 CPU 模拟器 Zsim 中提出了 PIM 操作编译器。PIM 操作编译器的作用是追踪各种精密深度神经网络(DNN)工作负载的指令,并生成 PIM 操作命令。最后,我们提出了一个架构级 PUM 仿真框架,该框架可根据编译器生成的 PIM 命令模拟带有 DNN 工作负载的 PUM 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Architecture-Level Framework for Enabling Processing-Using-Memory Simulations in Deep Neural Networks
The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improving the Durability of Shaded Pole Induction Motors Used for Refrigerator Fans New Approximate 4:2 Compressor for High Accuracy and Small Area Using MUX Logic A Study on the UWB/Encoder/IMU Sensor Fusion Position Estimation System for the Development of Driving Assistance Technology in Autonomous Driving Wheelchairs DDANet: Dilated Deformable Attention Network for Dynamic Scene Deblurring NIR to LWIR Image Translation for Generating LWIR Image Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1