提高信道编码可靠性的友好攻击

Anastasia Kurmukova, Deniz Gündüz
{"title":"提高信道编码可靠性的友好攻击","authors":"Anastasia Kurmukova, Deniz Gündüz","doi":"10.48550/arXiv.2401.14184","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach called \"friendly attack\" aimed at enhancing the performance of error correction channel codes. Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input, resulting in a substantial impact on the network's performance. By introducing small perturbations to fixed-point modulated codewords before transmission, we effectively improve the decoder's performance without violating the input power constraint. The perturbation design is accomplished by a modified iterative fast gradient method. This study investigates various decoder architectures suitable for computing gradients to obtain the desired perturbations. Specifically, we consider belief propagation (BP) for LDPC codes; the error correcting code transformer, BP and neural BP (NBP) for polar codes, and neural BCJR for convolutional codes. We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders. This method allows us to increase the reliability of communication with a legacy receiver by simply modifying the transmitted codeword appropriately.","PeriodicalId":518480,"journal":{"name":"AAAI Conference on Artificial Intelligence","volume":"26 1","pages":"13292-13300"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friendly Attacks to Improve Channel Coding Reliability\",\"authors\":\"Anastasia Kurmukova, Deniz Gündüz\",\"doi\":\"10.48550/arXiv.2401.14184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel approach called \\\"friendly attack\\\" aimed at enhancing the performance of error correction channel codes. Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input, resulting in a substantial impact on the network's performance. By introducing small perturbations to fixed-point modulated codewords before transmission, we effectively improve the decoder's performance without violating the input power constraint. The perturbation design is accomplished by a modified iterative fast gradient method. This study investigates various decoder architectures suitable for computing gradients to obtain the desired perturbations. Specifically, we consider belief propagation (BP) for LDPC codes; the error correcting code transformer, BP and neural BP (NBP) for polar codes, and neural BCJR for convolutional codes. We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders. This method allows us to increase the reliability of communication with a legacy receiver by simply modifying the transmitted codeword appropriately.\",\"PeriodicalId\":518480,\"journal\":{\"name\":\"AAAI Conference on Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"13292-13300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.14184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.14184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种名为 "友好攻击 "的新方法,旨在提高纠错信道编码的性能。受对抗攻击概念的启发,我们的方法利用了在神经网络输入中引入微小扰动,从而对网络性能产生重大影响的思想。通过在传输前对定点调制码字引入微小扰动,我们可以在不违反输入功率约束的情况下有效提高解码器的性能。扰动设计是通过改进的迭代快速梯度法完成的。本研究探讨了适合计算梯度以获得所需扰动的各种解码器架构。具体来说,我们考虑了 LDPC 码的信念传播 (BP)、纠错码变换器、极性码的 BP 和神经 BP (NBP),以及卷积码的神经 BCJR。我们证明,所提出的友好攻击方法可以提高不同信道、调制、编码和解码器的可靠性。通过这种方法,我们只需适当修改传输的码字,就能提高与传统接收器通信的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Friendly Attacks to Improve Channel Coding Reliability
This paper introduces a novel approach called "friendly attack" aimed at enhancing the performance of error correction channel codes. Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input, resulting in a substantial impact on the network's performance. By introducing small perturbations to fixed-point modulated codewords before transmission, we effectively improve the decoder's performance without violating the input power constraint. The perturbation design is accomplished by a modified iterative fast gradient method. This study investigates various decoder architectures suitable for computing gradients to obtain the desired perturbations. Specifically, we consider belief propagation (BP) for LDPC codes; the error correcting code transformer, BP and neural BP (NBP) for polar codes, and neural BCJR for convolutional codes. We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders. This method allows us to increase the reliability of communication with a legacy receiver by simply modifying the transmitted codeword appropriately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Cross-View Hierarchical Graph Learning Hypernetwork for Skill Demand-Supply Joint Prediction Learning to Stop Cut Generation for Efficient Mixed-Integer Linear Programming Knowledge-Aware Neuron Interpretation for Scene Classification Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing Sketch and Refine: Towards Fast and Accurate Lane Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1