探索自然语言处理和监督学习在假新闻文章分类中的功效

Jain R
{"title":"探索自然语言处理和监督学习在假新闻文章分类中的功效","authors":"Jain R","doi":"10.23880/art-16000108","DOIUrl":null,"url":null,"abstract":"This research article investigates the effectiveness of natural language processing (NLP) and supervised learning in classifying fake news articles. With the increasing prevalence of fake news in online media, it has become critical to identify and categorize such articles accurately. In this study, we apply NLP techniques to extract features from textual data, and use a supervised learning algorithm to train a classification model. We use a dataset of fake news articles to evaluate the performance of our model in terms of accuracy, precision, recall, and F1 score. Our results demonstrate that our approach achieved high accuracy and robustness in the classification of fake news articles. Furthermore, we perform a feature importance analysis to identify the most significant features that contribute to the classification of fake news. The findings of this study have practical implications for identifying and combating fake news in online media, and also provide insights into the effectiveness of NLP and supervised learning for text classification tasks.","PeriodicalId":518851,"journal":{"name":"Advances in Robotic Technology","volume":"13 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Efficacy of Natural Language Processing and Supervised Learning in the Classification of Fake News Articles\",\"authors\":\"Jain R\",\"doi\":\"10.23880/art-16000108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research article investigates the effectiveness of natural language processing (NLP) and supervised learning in classifying fake news articles. With the increasing prevalence of fake news in online media, it has become critical to identify and categorize such articles accurately. In this study, we apply NLP techniques to extract features from textual data, and use a supervised learning algorithm to train a classification model. We use a dataset of fake news articles to evaluate the performance of our model in terms of accuracy, precision, recall, and F1 score. Our results demonstrate that our approach achieved high accuracy and robustness in the classification of fake news articles. Furthermore, we perform a feature importance analysis to identify the most significant features that contribute to the classification of fake news. The findings of this study have practical implications for identifying and combating fake news in online media, and also provide insights into the effectiveness of NLP and supervised learning for text classification tasks.\",\"PeriodicalId\":518851,\"journal\":{\"name\":\"Advances in Robotic Technology\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Robotic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/art-16000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Robotic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/art-16000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇研究文章探讨了自然语言处理(NLP)和监督学习在假新闻文章分类中的有效性。随着假新闻在网络媒体中日益盛行,准确识别和分类此类文章变得至关重要。在本研究中,我们应用 NLP 技术从文本数据中提取特征,并使用监督学习算法训练分类模型。我们使用假新闻文章数据集来评估模型在准确率、精确度、召回率和 F1 分数方面的性能。结果表明,我们的方法在假新闻文章分类方面实现了较高的准确性和鲁棒性。此外,我们还进行了特征重要性分析,以确定有助于假新闻分类的最重要特征。本研究的发现对识别和打击网络媒体中的假新闻具有实际意义,同时也为 NLP 和监督学习在文本分类任务中的有效性提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Efficacy of Natural Language Processing and Supervised Learning in the Classification of Fake News Articles
This research article investigates the effectiveness of natural language processing (NLP) and supervised learning in classifying fake news articles. With the increasing prevalence of fake news in online media, it has become critical to identify and categorize such articles accurately. In this study, we apply NLP techniques to extract features from textual data, and use a supervised learning algorithm to train a classification model. We use a dataset of fake news articles to evaluate the performance of our model in terms of accuracy, precision, recall, and F1 score. Our results demonstrate that our approach achieved high accuracy and robustness in the classification of fake news articles. Furthermore, we perform a feature importance analysis to identify the most significant features that contribute to the classification of fake news. The findings of this study have practical implications for identifying and combating fake news in online media, and also provide insights into the effectiveness of NLP and supervised learning for text classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Fascinating World of Cloud Robotics Unveiling the Technological Tapestry: Exploring the Transformative Influence of AI and ML across Diverse Domains Exploring the Efficacy of Natural Language Processing and Supervised Learning in the Classification of Fake News Articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1