加速反馈控制,实现 ICN 上自适应视频流的 QoE 公平性

Rei Nakagawa, S. Ohzahata, Ryo Yamamoto
{"title":"加速反馈控制,实现 ICN 上自适应视频流的 QoE 公平性","authors":"Rei Nakagawa, S. Ohzahata, Ryo Yamamoto","doi":"10.1109/CCNC51664.2024.10454865","DOIUrl":null,"url":null,"abstract":"Today, information centric networking enables adaptive video streaming clients to further improve QoE by applying flexible content-based control. However, an adaptive bitrate algorithm makes a client occupy the bottleneck link at excessively high bitrate, reducing the QoE fairness to other clients sharing the bottleneck link. Then, we propose fairAccel, a method of accelerating bitrate-based feedback control for achieving QoE fairness. fairAccel assigns more bandwidth to clients selecting the lower bitrate while suppressing content requests from clients selecting the highest bitrate on the bottleneck link. In addition, to further improve QoE fairness, fairAccel exploits the symmetric routing of ICN content request / response and applies bidirectional feedback control to the content request / response path. Thus, fairAccel accelerates feedback control by mitigating router queues under control of suppressing content requests before excessive traffic is delivered to the response path. Through simulation experiments, fairAccel improves the average bitrate and further improves QoE fairness for representative ABR algorithms.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"87 11","pages":"98-106"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Feedback Control for QoE Fairness in Adaptive Video Streaming Over ICN\",\"authors\":\"Rei Nakagawa, S. Ohzahata, Ryo Yamamoto\",\"doi\":\"10.1109/CCNC51664.2024.10454865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, information centric networking enables adaptive video streaming clients to further improve QoE by applying flexible content-based control. However, an adaptive bitrate algorithm makes a client occupy the bottleneck link at excessively high bitrate, reducing the QoE fairness to other clients sharing the bottleneck link. Then, we propose fairAccel, a method of accelerating bitrate-based feedback control for achieving QoE fairness. fairAccel assigns more bandwidth to clients selecting the lower bitrate while suppressing content requests from clients selecting the highest bitrate on the bottleneck link. In addition, to further improve QoE fairness, fairAccel exploits the symmetric routing of ICN content request / response and applies bidirectional feedback control to the content request / response path. Thus, fairAccel accelerates feedback control by mitigating router queues under control of suppressing content requests before excessive traffic is delivered to the response path. Through simulation experiments, fairAccel improves the average bitrate and further improves QoE fairness for representative ABR algorithms.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"87 11\",\"pages\":\"98-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,以信息为中心的网络使自适应视频流客户端能够通过应用灵活的基于内容的控制来进一步改善 QoE。然而,自适应比特率算法会使客户端以过高的比特率占用瓶颈链路,从而降低共享瓶颈链路的其他客户端的 QoE 公平性。因此,我们提出了一种基于比特率的加速反馈控制方法--公平比特率(fairAccel),以实现 QoE 公平性。公平比特率会为选择较低比特率的客户端分配更多带宽,同时抑制在瓶颈链路上选择最高比特率的客户端的内容请求。此外,为了进一步提高 QoE 公平性,fairAccel 还利用了 ICN 内容请求/响应的对称路由,并对内容请求/响应路径进行双向反馈控制。这样,fairAccel 就能在过多流量被传送到响应路径之前,通过抑制内容请求来控制路由器队列,从而加速反馈控制。通过模拟实验,fairAccel 提高了平均比特率,并进一步改善了代表性 ABR 算法的 QoE 公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Feedback Control for QoE Fairness in Adaptive Video Streaming Over ICN
Today, information centric networking enables adaptive video streaming clients to further improve QoE by applying flexible content-based control. However, an adaptive bitrate algorithm makes a client occupy the bottleneck link at excessively high bitrate, reducing the QoE fairness to other clients sharing the bottleneck link. Then, we propose fairAccel, a method of accelerating bitrate-based feedback control for achieving QoE fairness. fairAccel assigns more bandwidth to clients selecting the lower bitrate while suppressing content requests from clients selecting the highest bitrate on the bottleneck link. In addition, to further improve QoE fairness, fairAccel exploits the symmetric routing of ICN content request / response and applies bidirectional feedback control to the content request / response path. Thus, fairAccel accelerates feedback control by mitigating router queues under control of suppressing content requests before excessive traffic is delivered to the response path. Through simulation experiments, fairAccel improves the average bitrate and further improves QoE fairness for representative ABR algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1