基于云的移动网络第一人称射击游戏的客观 QoE 模型

H. S. Rossi, Karan Mitra, C. Åhlund, Irina Cotanis, Niclas Örgen, Per Johansson
{"title":"基于云的移动网络第一人称射击游戏的客观 QoE 模型","authors":"H. S. Rossi, Karan Mitra, C. Åhlund, Irina Cotanis, Niclas Örgen, Per Johansson","doi":"10.1109/CCNC51664.2024.10454666","DOIUrl":null,"url":null,"abstract":"Mobile cloud gaming (MCG) lets users play cloud games (CG) on mobile devices anywhere via mobile networks. However, the stochastic nature of network quality of service (QoS) can result in varying user quality of experience (QoE). Understanding, modeling, and predicting the impact of mobile networks' QoS on users' QoE is crucial. This helps stakeholders optimize networks, and game developers efficiently create cloud-hosted games provisioned over mobile networks. This paper investigates the impact of QoS on users' QoE and proposes, develops and validates novel models for predicting QoE for MCG in mobile networks using realistic subjective tests. In particular, we propose and develop three QoE models using multiple, polynomial, and non-linear regression. Our results validate that multiple regression (with R2=0.79, RMSE=0.45) can model complex relationships between QoS factors that impact QoE. Multiple polynomial regression achieved the overall fit with (R2=0.94, RMSE=0.24). Lastly, the non-linear model achieved a good RMSE of 0.24. To select the best model out of the three, we applied the F-test and determined that polynomial regression had the best statistical fit.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"15 3","pages":"550-553"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Objective QoE Models for Cloud-Based First Person Shooter Game over Mobile Networks\",\"authors\":\"H. S. Rossi, Karan Mitra, C. Åhlund, Irina Cotanis, Niclas Örgen, Per Johansson\",\"doi\":\"10.1109/CCNC51664.2024.10454666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile cloud gaming (MCG) lets users play cloud games (CG) on mobile devices anywhere via mobile networks. However, the stochastic nature of network quality of service (QoS) can result in varying user quality of experience (QoE). Understanding, modeling, and predicting the impact of mobile networks' QoS on users' QoE is crucial. This helps stakeholders optimize networks, and game developers efficiently create cloud-hosted games provisioned over mobile networks. This paper investigates the impact of QoS on users' QoE and proposes, develops and validates novel models for predicting QoE for MCG in mobile networks using realistic subjective tests. In particular, we propose and develop three QoE models using multiple, polynomial, and non-linear regression. Our results validate that multiple regression (with R2=0.79, RMSE=0.45) can model complex relationships between QoS factors that impact QoE. Multiple polynomial regression achieved the overall fit with (R2=0.94, RMSE=0.24). Lastly, the non-linear model achieved a good RMSE of 0.24. To select the best model out of the three, we applied the F-test and determined that polynomial regression had the best statistical fit.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"15 3\",\"pages\":\"550-553\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

移动云游戏(MCG)可让用户在移动设备上通过移动网络随时随地玩云游戏(CG)。然而,网络服务质量(QoS)的随机性会导致用户体验质量(QoE)的不同。了解、模拟和预测移动网络 QoS 对用户 QoE 的影响至关重要。这有助于利益相关者优化网络,也有助于游戏开发者高效地创建通过移动网络提供的云托管游戏。本文研究了 QoS 对用户 QoE 的影响,并提出、开发和验证了用于预测移动网络中 MCG QoE 的新模型,该模型使用了真实的主观测试。特别是,我们利用多元回归、多项式回归和非线性回归提出并开发了三种 QoE 模型。我们的结果验证了多元回归(R2=0.79,RMSE=0.45)可以模拟影响 QoE 的 QoS 因素之间的复杂关系。多元多项式回归的总体拟合度为(R2=0.94,RMSE=0.24)。最后,非线性模型的 RMSE 为 0.24。为了从三个模型中选出最佳模型,我们进行了 F 检验,并确定多项式回归的统计拟合效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Objective QoE Models for Cloud-Based First Person Shooter Game over Mobile Networks
Mobile cloud gaming (MCG) lets users play cloud games (CG) on mobile devices anywhere via mobile networks. However, the stochastic nature of network quality of service (QoS) can result in varying user quality of experience (QoE). Understanding, modeling, and predicting the impact of mobile networks' QoS on users' QoE is crucial. This helps stakeholders optimize networks, and game developers efficiently create cloud-hosted games provisioned over mobile networks. This paper investigates the impact of QoS on users' QoE and proposes, develops and validates novel models for predicting QoE for MCG in mobile networks using realistic subjective tests. In particular, we propose and develop three QoE models using multiple, polynomial, and non-linear regression. Our results validate that multiple regression (with R2=0.79, RMSE=0.45) can model complex relationships between QoS factors that impact QoE. Multiple polynomial regression achieved the overall fit with (R2=0.94, RMSE=0.24). Lastly, the non-linear model achieved a good RMSE of 0.24. To select the best model out of the three, we applied the F-test and determined that polynomial regression had the best statistical fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1