人群感应评估中模拟参与者行为的挑战

Christine Bassem
{"title":"人群感应评估中模拟参与者行为的挑战","authors":"Christine Bassem","doi":"10.1109/CCNC51664.2024.10454892","DOIUrl":null,"url":null,"abstract":"In crowdsensing platforms, algorithms and models for task allocation play a critical role in shaping user behaviors, engagement levels, the quality of the collected data, and the performance of the platform as a whole. Regardless of the sensing model, task allocation mechanisms are difficult to evaluate and benchmark. In contrast to evaluating deployments of crowd-sensing platforms with real crowds, they are often evaluated via simulators that are incapable of modeling the complexities of human behavior, specifically in terms of their commitment to the platform and quality of sensing, but their strength is the ability to rapidly experiment with multiple algorithms. In this paper, we abstract the general characteristics of participant behaviors in crowdsensing, and implement these characteristics within the TACSim simulation framework. Further exemplifying the extendability power of that simulation framework, and the benefits it can offer the crowdsensing community.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"106 4","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges of Modeling Participant Behavior in CrowdSensing Evaluation\",\"authors\":\"Christine Bassem\",\"doi\":\"10.1109/CCNC51664.2024.10454892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In crowdsensing platforms, algorithms and models for task allocation play a critical role in shaping user behaviors, engagement levels, the quality of the collected data, and the performance of the platform as a whole. Regardless of the sensing model, task allocation mechanisms are difficult to evaluate and benchmark. In contrast to evaluating deployments of crowd-sensing platforms with real crowds, they are often evaluated via simulators that are incapable of modeling the complexities of human behavior, specifically in terms of their commitment to the platform and quality of sensing, but their strength is the ability to rapidly experiment with multiple algorithms. In this paper, we abstract the general characteristics of participant behaviors in crowdsensing, and implement these characteristics within the TACSim simulation framework. Further exemplifying the extendability power of that simulation framework, and the benefits it can offer the crowdsensing community.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"106 4\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在群体感应平台中,任务分配的算法和模型对用户行为、参与程度、收集数据的质量以及整个平台的性能起着至关重要的作用。无论采用哪种传感模型,任务分配机制都很难进行评估和基准测试。与使用真实人群评估人群感知平台的部署情况不同,通常是通过模拟器对其进行评估,而模拟器无法模拟人类行为的复杂性,特别是在对平台的承诺和感知质量方面,但其优势在于能够快速试验多种算法。在本文中,我们抽象出了人群感应中参与者行为的一般特征,并在 TACSim 仿真框架中实现了这些特征。这进一步体现了该仿真框架的可扩展性,以及它能为人群感应领域带来的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Challenges of Modeling Participant Behavior in CrowdSensing Evaluation
In crowdsensing platforms, algorithms and models for task allocation play a critical role in shaping user behaviors, engagement levels, the quality of the collected data, and the performance of the platform as a whole. Regardless of the sensing model, task allocation mechanisms are difficult to evaluate and benchmark. In contrast to evaluating deployments of crowd-sensing platforms with real crowds, they are often evaluated via simulators that are incapable of modeling the complexities of human behavior, specifically in terms of their commitment to the platform and quality of sensing, but their strength is the ability to rapidly experiment with multiple algorithms. In this paper, we abstract the general characteristics of participant behaviors in crowdsensing, and implement these characteristics within the TACSim simulation framework. Further exemplifying the extendability power of that simulation framework, and the benefits it can offer the crowdsensing community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1