边缘间移动驱动模型集成的实验评估

Shota Ono, Taku Yamazaki, Takumi Miyoshi, Akihito Taya, Yuuki Nishiyama, K. Sezaki
{"title":"边缘间移动驱动模型集成的实验评估","authors":"Shota Ono, Taku Yamazaki, Takumi Miyoshi, Akihito Taya, Yuuki Nishiyama, K. Sezaki","doi":"10.1109/CCNC51664.2024.10454772","DOIUrl":null,"url":null,"abstract":"We propose a user mobility-driven federated learning method, which integrates learning models from different regions, leveraging user mobility. This method aims to improve performance of learning models in specific regions by merging them with models from other areas. In regions with less user mobility, our method creates unique regional models, while in areas with high mobility, it integrates models for enhanced performance. Evaluation results indicate that accuracy improved with additional training, although it temporarily decreased after model integration.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"103 10","pages":"610-611"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Evaluation Toward Mobility-Driven Model Integration Between Edges\",\"authors\":\"Shota Ono, Taku Yamazaki, Takumi Miyoshi, Akihito Taya, Yuuki Nishiyama, K. Sezaki\",\"doi\":\"10.1109/CCNC51664.2024.10454772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a user mobility-driven federated learning method, which integrates learning models from different regions, leveraging user mobility. This method aims to improve performance of learning models in specific regions by merging them with models from other areas. In regions with less user mobility, our method creates unique regional models, while in areas with high mobility, it integrates models for enhanced performance. Evaluation results indicate that accuracy improved with additional training, although it temporarily decreased after model integration.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"103 10\",\"pages\":\"610-611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用户移动驱动的联合学习方法,它利用用户的移动性整合了来自不同地区的学习模型。这种方法旨在通过将特定地区的学习模型与其他地区的模型合并,提高学习模型的性能。在用户流动性较低的地区,我们的方法创建了独特的地区模型,而在用户流动性较高的地区,我们的方法整合了各种模型以提高性能。评估结果表明,虽然模型整合后准确率会暂时下降,但随着额外训练的进行,准确率会有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Evaluation Toward Mobility-Driven Model Integration Between Edges
We propose a user mobility-driven federated learning method, which integrates learning models from different regions, leveraging user mobility. This method aims to improve performance of learning models in specific regions by merging them with models from other areas. In regions with less user mobility, our method creates unique regional models, while in areas with high mobility, it integrates models for enhanced performance. Evaluation results indicate that accuracy improved with additional training, although it temporarily decreased after model integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1